Posteriorization of the Mandibular Condyle, Compression of the Retrodiscal Tissue and Anteriorization of the Articular Disc as a cause of Neurologic Pain. Recovery of the Physiological Relationship of the Head of the Mandible with the Articular Disc. Series of clinical cases.

In this page we present some of the physiological neuromuscular foundations for the treatment of temporomandibular joint pathologies, it was also presented the importance of differential diagnosis and also the use of bioinstrumentation as surface electromyography and computerized kinesiography.

Images of patients related to their symptoms were also presented. Several etiological factors such as trauma in early childhood, especially green stick fracture, recapture of the intra-articular discs in reducible displacements, and interrelation between craniomandibular disorders and the vertebral column.

When we talk about the treatment of TMJ pathologies we have to understand that there are different approaches. The proposal for a palliative treatment is the symptomatic treatment, that is, a treatment that seeks to block the symptoms. It is given through the administration of drugs, such as analgesics, anti-inflammatory and myo relaxing drugs. The restorative approach is the treatment that seeks when possible to correct or heal what is damaged. To know what is wrong, a differential diagnosis is necessary. This diagnosis must always be made prior to the treatment proposal.

1 FOTO INIC FRONTALA 19-year-old female patient presents at the clinic with complaints of constant headache, neck pain and swelling in the face, back of the head pain and migraines.

According to the anamnesis filled out by the patient herself, in the initial consultation she reports clicks in the jaw, dizziness, ear pain and low back pain.

The patient also reports bruxism and nighttime clenching.

2 FOTO INICIAL PERFILThe patient also refers to retro-ocular pain on the right side, pain in both shoulders, and pain in the TMJ (right temporomandibular joint).

The patient reports cracks in the TMJ on the right side, sensation of ear covering, strange sounds and non-specific facial pain.

The patient claims difficulty in opening the mouth and difficulty in chewing.

Summary report written by the patient

In the middle of the year 2014, I had a routine consultation at a dentist to clean my teeth and I reported cracking and pain in the jaw, she did not pay attention, she said it was normal and it would soon pass.

Since then I started with severe headaches, dizziness, ear pain, back pain, my feet (more in  my heel), pain in my eye as well, and in days of painful crises, my right eye would hardly open and the right side of the my face all swollen (mumps type).

After this worsening we looked for an TMJ specialist who gave me an acrylic plate, thin and only for my upper teeth.

I used the splint for six months and after that all the symptoms worsened.

We looked for another specialist, who made the same acrylic plate for the upper teeth, but in a very different size, it was a thick plate.

In the beginning it helped, after six months, all the symptoms started to appear stronger.

We consulted a new specialist, who made a new type of appliance, with the wires and the blue acrylic on the side (I took it to show to you), it was what had helped me the most, using it for 24 hours, improved pain, even dizziness , but after a year of use everything returned and with all the pain still stronger, however during that one year of treatment, despite the improvements I could not make any kind of physical effort even not strong  my jaw swelled (gym, climbing stairs, picking up weight …)

In March 2017, a year and four months of use of the appliance, the professional said it was time to start “weaning”, start leaving the device and use only to sleep because I should already be good, I commented that it had gotten worse and she insisted that it was the time to be well…

It was then that we looked for another specialist, this one said that the plate in use was not suitable for the problem and made a new plate of acrylic that judged the correct one for the presented problem, was thin and of acrylic, equal to the first one I already used, only for the upper teeth, I immediately told to my mother and to him that this plate would not solve, since I had already used identical plate in previous treatment, he insisted saying yes, that was the correct one.

With the use of the device I also did  hot compresses and shocks of physiotherapy and also needles, which helped a lot in the neck muscles that hurt a lot, but this device from the beginning did not help, the headaches that felt every day were even worse, I’ve had more dizziness.

3 DENTES INIC PROT FRONTALHabitual occlusion of the patient on the day of the consultation.

6 OCLUSAIS INIC SEM PROTUpper and lower occlusal views of the patient on the day of the consultation.

7 PANORAMICA INICIALInitial panoramic radiograph of the patient before treatment.

8 LAMINOGRAFIA INCIAL

TMJ laminography in habitual occlusion and in open mouth.

The laminography of the temporomandibular joints shows a modification of the axis of growth of the mandibular condyles caused by a trauma in the early childhood, (green stick fracture).

Important retro position of the jaw mandibular heads especially on the left side causing an important retrodiscal compression.

9 TELE PERFIL INICIALLateral radiograph of the patient in habitual occlusion before treatment.

10 C7 INICIALLateral and cervical radiograph of the patient in habitual occlusion before treatment. Note the loss of cervical lordosis, rectification of the cervical spine.

11 FRONTAL INICIALFrontal radiography of the patient in habitual occlusion before treatment.

12 eletromiog dinamica inicial

Dynamic electromyographic record of the patient in habitual occlusion.

It is important to understand that surface electromyography is an additional tool in diagnosis, and not the only determinant, is a very interesting tool to be able to control the evolution in our own patient during the course of treatment.

13 cortes sagitais da ATM ESQUERDA FECHADA ANTES DO TRAT

 MRI: sagittal T1 slices of the left TMJ closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular heads are in retroposition.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

The magnetic nuclear resonance of the patient in habitual occlusion demonstrates the anterior dislocation of both articular discs, retroposition of the mandibular heads and modification of the axis of growth caused by traumatism in the early childhood (Structural modifications of the mandibular condylar process as one of the sequels of traumatism. in infancy). Dislocation is reducible (open mouth resonance not included in this post).

14 cortes sagitais da ATM ESQUERDA FECHADA ANTES DO TRAT

 MRI: sagittal T1 slices of the left TMJ closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular heads are in retroposition.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

15 cortes sagitais da ATM DIREITA FECHADA ANTES DO TRAT

 MRI: sagittal T1 slices of the right TMJ closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular heads are in retroposition.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

16 cortes sagitais da ATM DIREITA FECHADA ANTES DO TRAT

 MRI: sagittal T1 slices of the right TMJ closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular heads are in retroposition.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

17 RNM FRONTAIS INICIAIS DIR E ESQ-Recuperado

MRI: T1 frontal slices of right and left temporomandibular joints, closed mouth in habitual occlusion before treatment.

The frontal slice of the right and left temporomandibular joint evidences a severe loss of joint space.

20 TOMOGRAFIA

Tomographic examination of temporo-mandibular joints.

Right and left sagittal slices in habitual occlusion prior to treatment.

21 TOMOGRAFIA

Tomographic examination of temporo-mandibular joints.

Multiplanar reconstruction – left  TMJ in habitual occlusion before treatment.

Important posteriorisation of the mandible head.

22 TOMOGRAFIA

Tomographic examination of temporo-mandibular joints.

Multiplanar reconstruction – right  TMJ in habitual occlusion before treatment.

Important posteriorisation of the mandible head.

22a REGISTRO CINECIOGRAFICO INICIAL

When our proposal is a restorative treatment, we have a FIRST PHASE where the goal when possible is to heal the joint. Sometimes we can only improve it or prevent it from getting worse. Knowing what we can treat and what we cannot treat and the limitations of each individual case is very important.

To correctly evaluate the maxillomandibular relationship we should begin to consider the physiological position of mandibular rest.

Physiological rest is a concept applicable to all the muscles of the body.

The stomatognathic musculature is no exception.

The patient’s masticatory muscles were electronically deprogrammed and a new resting neuromuscular physiological position was recorded.

The patient has a pathological free space of 7.7 mm.

The patient also had a 0.6 mm mandibular retroposition.

23 oclusao DIO

Occlusion of the patient with the DIO (intraoral device)

With the record obtained with the jaw tracker an intraoral device (DIO) was made to three dimensionally reposition the mandible.

The NEUROMUSCULAR PHYSIOLOGICAL position was recorded in the form of an occlusal bite record, which was later used to make a DIO (intraoral device)

In the first phase the intraoral devices are recalibrated and / or changed according to each specific case as the jaw, muscles and TMJ improve.

24 COMPARATIVAS FRONTAIS POSTURAIS

Comparative frontal postural images.

The patient was derived along with TMJ pathology treatment for a physiotherapy team in the city where she resides. Along with mandibular repositioning the conditioning of all postural chains is necessary.

Each patient needs a specific derivation according to the particular case.

25 eletromiog dinamica com DIO

Dynamic electromyographic record of the patient with the DIO (intraoral device) in physiological neuromuscular occlusion.

26 CONTROLE DA ORTESE

28 RNM Comparativas esquerda 1 sagital

MRI: Comparison of left sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

29 RNM Comparativas esquerda 2 sagital

MRI: Comparison of left sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

30 RNM Comparativas esquerda 2 sagital

MRI: Comparison of left sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

31 RNM Comparativas esquerda 2 sagital

MRI: Comparison of left sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

32 RNM Comparativas direia 2 sagital

MRI: Comparison of right sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

33 RNM Comparativas direia 2 sagital

MRI: Comparison of right sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

34 RNM Comparativas direia 2 sagital

MRI: Comparison of right sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

35 RNM Comparativas direia 2 sagital

MRI: Comparison of right sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

36 RNM Comparativas esquerda frontal

RNM: Comparison of FRONTAL SLICE  T1, left TMJ, closed mouth, before the physiological neuromuscular treatment, and the same left TMJ, FRONTAL SLICE T1, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

37 RNM Comparativas direita frontal

RNM: Comparison of FRONTAL SLICE  T1, right TMJ, closed mouth, before the physiological neuromuscular treatment, and the same right TMJ, FRONTAL SLICE T1, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

38 panoramicas comparativas

Comparative panoramic radiographs of the patient before starting the treatment and at the beginning of the second phase of the treatment. At this time the removal of the third molars included can also be done.

39 laminografias comparativas

Comparative laminographies of the patient before starting the treatment and at the beginning of the second phase of the treatment. The joint decompression can be observed.

Laminographs and or COMPUTERIZED TOMOGRAPHS, even showing decompression DO NOT SHOW the position of the articular disc. The position of the articular disc and the presence or not of osseous edema of the mandibular condyle can only be evaluated with nuclear magnetic resonance. The result or not of the recovery of the Physiological Relationship of the Jaw Head to the Articular Disc can be evaluated by comparing the MRI after the first phase and the comparison with the initial MRI.

40 frontais comparativas

Comparative frontal radiographs of the patient before starting the treatment and at the beginning of the second phase of the treatment.

When the first phase is completed, we verify if the subsequent control images correspond to our goals set in the initial diagnosis. We know that there are cases where we can improve the case, and others where we can prevent it from worsening, and others where we can only treat the pain.

The patient did not report any symptoms from the temporomandibular joint. The comparative MRI showed the recovery of the physiological relation of the head of the mandible with the articular disc.

The electromyographic and kinesiographic records objectively showed improvement of the neuromuscular function.

In the case of positive results from the first phase we can start a second phase of treatment to remove the device that is used permanently during the first phase of the treatment. For this we can perform a three-dimensional orthodontic, a physiological neuromuscular rehabilitation or the combination of both. Always maintaining the mandibular location in balance with the muscular planes, temporomandibular joint and dental planes.

It was decided to start the SECOND PHASE of the treatment to remove the DIO (intraoral device), maintaining the physiological neuromuscular occlusion.

In this case we will move to a three-dimensional orthodontic, where the teeth are erupted to the new physiological neuromuscular position.

A three-dimensional orthodontics needs to maintain the three-dimensional position of the mandible in balance with its bone and muscle planes achieved in the FIRST PHASE, and whenever possible maintain the Physiological Relationship of the Jaw Head with the Articular Disc.
It is fundamental to understand, that this passage has to be made keeping the DIO (intraoral device, together with the different devices to be used for the dental eruption)

47 DEPOIMENTO 3

Patient’s statement:

After long three years of failure looking for a treatment for my problem in my city, I found Dr. Lidia in a simple Google search.

I went to her and with a proposal completely different from the others, we started the new treatment immediately.

I was in an advanced stage, where I had  headache all day, pain in the ear, swollen eye (often unable to open), right side of the swollen face too (like a mumps), pain in the neck, pain in my back and also on foot.

I had no quality of life, because I was in pain all the time. When I started the treatment in the first two days I did not feel any more headaches. With the monthly follow up, adjusting as my body asked, I no longer felt any pain in anything and I returned to a normal life.

Today I am in the middle of the second phase, super anxious to go to the end and every month that passes I feel better and better.

Recapturing the Articular Disc or Repositioning the Mandibular Condyle? What about Rethinking the Concept as the Recovery of the Physiological Relationship of the Head of the Mandible with the Articular Disc. Patients with a long history of pain. Case series. First Section.

Recapture the articular disc, repositioning the mandibular condyle?

What about rethinking the concept as the recovery of the physiological relationship of the mandible head with the articular disc ,WHEN IT IS POSSIBLE.

And when is it not possible? What is the differential diagnosis? WHAT CAN WE OFFER TO OUR PATIENTS?

What type of orthotic or intraoral device to use? What is the purpose of an orthotic  in a TMJ Pathology treatment? Repositioning the jaw, recapturing the articular discs? Is this always possible? DEPEND ON THE DIFFERENTIAL DIAGNOSIS!

Does it have changes in the articular structures of the temporomandibular joint?

Does it have distortions in the horizontal, vertical and transverse posture of the craniomandibular complex?

How are the bones?

How’s the cartilage?

How’s the articular disk?

How are the muscles in this system?

How is the cervical spine in relation to the whole system?

How is the relation of the vertebral column with the other parts of the system?

The teeth, the two temporomandibular joints and the postural musculature are parts of the same bone, the mandible. They are deeply interrelated and interdependent in growth, form, and function. An abnormality in one, profoundly affects the others.

1 frente

A 30-year-old female patient presents at the clinic with a history of headache, pain in the forehead, pain and stiffness in the nape of the neck, left eyebrow pain, pain behind the right eye, and pain in the right shoulder. The patient reports TMJ pain (temporomandibular joint) on the right side.

The patient reports bilateral crackling, non-specific facial pain, and muscle tremor, difficulty opening the mouth, difficulty in chewing and mandibular locking.

Summary report written by the patient:

I do not remember a sudden drop where there might have been some kind of injury.
At 6 years of age I was a gymnast. I always had falls, front, back and head. But there were protections on the floor.

Near 8 years old, I extract a molar from the lower left side. I think that from this I have always forced more chewing on the right side.

At approximately 13/14 years of age, I remember starting the cracks on the right side. On this side I had a cross bite and a deciduous canine that “bit” behind the lower tooth.

At this stage, the crackling became more frequent, causing a bit of difficulty to fully open the mouth.  When trying to open the mouth without the snap, the opening becomes smaller than after the click. That is, if I do not play with the jaw, the mouth does not open completely.

In 2004 I had the first “lockup”. I remember being in winter and cold. I tried to do the “game” of the jaw and I could not open the mouth. Then I forced myself to open my mouth and I felt a strong crack, followed by pain in the ear / nose. The impression was that it had displaced some bone / nerve.

From this episode, whenever I force more the region, the locking happens. Ex: when I eat meats, candy, peanuts. Things that I need to force when chewing.

In 2008 I put orthodontic appliance to make the corrections. In the treatment, I made a process of spacing the teeth, with a device in the roof of the mouth to open the arch. I kept my teeth apart for a while.

After finishing the treatment, corrected the teeth, the clicks returned lighter. Approximately 1 year later, the locking returned as well. I started with headaches and cervical pain. I felt slight tingling in the head.

In 2015 I started to hear some kind of “sand” on the left side. Then I got pregnant and in this period began the crackling also on the left side. In February 2017 I had the first “lock” on the left side.

Now when I feel the locking, I try to relax the muscles well, leaving the jaw loose for a few minutes. Sometimes it returns to normal anyway, other times I have to force it with the opening of the mouth, causing a strong crack.

2 foto inicial perfil

Current information:

When I close my mouth, I feel my jaw line back slightly, to “marry” the bite. To keep my mouth “loose” and comfortable, I have to snap both sides, and let the jaw loose.

When I try to open my mouth without the snaps, the opening becomes smaller than after the click. That is, if I do not play with the jaw, the mouth does not open completely.

Crashes usually occur:

– Yawning;

– In the morning (awake with the jaw locked);

– Eating meats.

2 tomo

CT: Part of the initial study of the patient sent before the consultation requested by another professional.

Anamnesis and clinical examination are a key part in the diagnosis of patients with TMJ pathology.

Computed tomography is an excellent image, but when we treat a synovial joint in a patient with TMJ pathologies, CT does NOT PROVIDE THE INFORMATION OF THE SOFT TISSUES.

Magnetic Nuclear Resonance (NMR) can give a lot of information and not just the position of the disk. It is essential to have the knowledge to KNOW WHAT TO DO WITH THIS INFORMATION.

We cannot treat a patient with mandible head necrosis or with medullary edema or arthrosis or rheumatoid arthritis or lupus in the same way that we treat another patient with only a wrong position of the jaw.

The temporomandibular joints of all these patients need to be decompressed, but that is only part of the problem.

3 dentes inicHabitual occlusion of the patient on the day of the consultation.

4 oclusaisUpper and lower occlusal views of the patient prior to treatment.

Orthodontic treatment contention wire is observed between the right and left lower canines.

5 panoramica

Initial panoramic radiograph of the patient before treatment.

Orthodontic treatment contention wire is observed between the right and left lower canines.

6 laminografia

The laminography of the temporomandibular joints shows a modification of the growth axis of the mandibular condyles in both the left and right caused by a traumatism in the early childhood, (fracture in green stick).

Retro position of both mandibular heads in the articular fossae.

TMJ laminography in habitual occlusion and open mouth.

cicatriz do queixoThree-dimensional asymmetries in the head of the condyle may have been caused by different etiologies and cause morphofunctional pathologies.

Changes in the orientation of the mandible head occur in patients who have suffered blows in the chin region, either anteroposterior, vertical or lateral. We can observe in these cases a deformation of the head of the mandible in the form of curvature, with an anterior concavity, which in some cases may be so important which produces a compression of the retrodiscal region, causing severe symptoms.

7 frontal

Frontal radiography of the patient in habitual occlusion before treatment.

Orthodontic treatment contention wire is observed between the right and left lower canines.

8 teleperfil

Lateral radiograph of the patient in habitual occlusion before treatment.

9 c 7Lateral and cervical radiograph of the patient in habitual occlusion before treatment. Note the loss of cervical lordosis and rectification of the cervical spine.

16 rnm inicial 1

MRI: sagittal slices of the left TMJ in the closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular head is in retro position.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

17 rnm inicial 2

MRI: sagittal slices of the left TMJ in the closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular head is in retro position.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

19 rnm inicial4

MRI: sagittal slices of the right TMJ in the closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular head is in retro position.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

20 rnm dir inicial5

MRI: sagittal slices of the right TMJ in the closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular head is in retro position.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

21 rnm inicial 6

MRI: sagittal slices of the right TMJ in the closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular head is in retro position.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

22 frontal rnm inicial 7MRI: frontal slices of the right and the left temporomandibular joints, closed mouth in habitual occlusion before treatment.

The frontal slice of the right and left temporomandibular joint evidences a severe loss of joint space.

24 atm aberta24a eletromiografia dinãmica habitual rolos de algodão

Dynamic electromyography record of the patient in habitual occlusion and with cotton rolls on the right side (second column), left side (third column) and both right and left sides (fourth column).

Note the improvement in recruitment of motor units in the fourth column.

25 registro cineciografico inicial

Patient’s initial record for the construction of the DIO ( intraoral device)

To correctly evaluate the Maxilomandibular relationship we should begin to consider the physiological rest mandible position.

Physiological rest is a concept applicable to all the muscles of the body.

The stomatognathic musculature is no exception.

The patient’s masticatory muscles were deprogrammed electronically and a new physiological neuromuscular position at rest was recorded.

The patient has in this first record a pathological free space of 6,4 mm. 

The patient also presented a 0.4 mm  of mandibular retro position.

26 recalibraÇÃo da orteseRecalibration of the physiological neuromuscular position of the DIO (intraoral device)

In the first phase the intraoral devices are recalibrated and / or changed according to each specific case as the jaw, muscles and TMJ improve.

28 ortoseOcclusion of the patient with the DIO (intraoral device)

With the record obtained with the jaw tracker an intraoral device (DIO) was made to reposition the mandible three-dimensionally.

The PHYSIOLOGICAL NEUROMUSCULAR position was recorded in the form of an occlusal bite record, which was later used to make a DIO (intraoral device)

In the first phase the intraoral devices are recalibrated and / or changed according to each specific case as the jaw, muscles and TMJ improve.

29 controle da orteseAnother cinecigraphic record to control the DIO (intraoral device) in a physiological neuromuscular position as the device is changed or recalibrated.

The patient did not report any more symptomatology. The electromyography and kinesiography records objectively showed improvement of the neuromuscular function.

I asked for the second MRI (nuclear magnetic resonance) to objectively evaluate the physiological relationship between the mandibular condyles and the articular disc.

35 rnm comparativas 1RNM: Comparison of the sagittal slice of the left TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

35b rnm comparativas 1RNM: Comparison of the sagittal slice of the left TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

36 rnm comparativas 2RNM: Comparison of the sagittal slice of the left TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

38 rnm comparativas 4RNM: Comparison of the sagittal slice of the left TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

39 rnm comparativas 5

RNM: Comparison of the sagittal slice of the rigt TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

40 rnm comparativas 6RNM: Comparison of the sagittal slice of the rigt TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

41 rnm comparativas7RNM: Comparison of the sagittal slice of the rigt TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

42 rnm comparativas 8RNM: Comparison of the sagittal slice of the rigt TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same right TMJ,  closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

43 frontal rnm comparativas 8

RNM: Comparison of the frontal slice of the left TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological refrontallation of the head of the mandible with the articular disc.

44 frontal rnm comparativas 8

RNM: Comparison of the frontal slice of the rigt TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological refrontallation of the head of the mandible with the articular disc.

45 imagens

The patient did not report any more symptomatology. The comparative MRI showed the recovery of the physiological relationship of the mandible head with the articular disc.

The electromyographic and kinesiographic records objectively showed improvement of the neuromuscular function.

It was decided to start the SECOND PHASE of the treatment to remove the DIO (intraoral device), maintaining the neuromuscular physiological occlusion.

For this we use a three-dimensional orthodontic, where the teeth are erupted to the new physiological neuromuscular position.

46 depoimento 1Patient Testimony:

My first memory of locking joints was at age 15 or so.

I looked for orthodontic specialists; I made the necessary “adjustments”, but the locking and the pain still continued.

I looked for Dr. Lidia now at the age of 30, since other experts told me that only surgery would be possible in my case. And yet, without knowing exactly whether we would succeed.

After starting the first phase of treatment with the device, the pain ceased and never again I had the jaw locking that so frighten me.

47 depoimento 2

I adapted very easily to the treatment, I was and I am being much disciplined with the use of the device.

Now, as Dr. Lidia explained to me, with the discs already in the right place, we will pass for the second phase, for withdrawal of the device.

Today I’m having a routine without worry that I can “lock” at any time.

I’m very grateful to Dr. Lidia.

TMJ Study and Investigation Page. Three years of publication.

Dear friends,

At December 2014 I started the project TMJ Study and Investigation Page. At first, all its content was offered in three languages: Portuguese, English and Spanish. Due to the analysis of the webpage access statistics, at March 2015 I decided to offer the content solely in Portuguese and English.

Anyway, access to the contents of the page is still available to other researchers, professionals in the field and to those interested in the research that I develop.

Three years of publication

Nowadays, the medicine based on evidence is hierarchically stratified from top to bottom, where in the base of the pyramid we find the clinic cases, which are rarely seen as evidence.

The TMJ Study and Investigation Page had in its conception, the purpose of posting the clinic cases, which were carefully published with the documentation related to each of the patients treated at Clinica MY with pain complaints, dysfunction and TMJ pathology.

The proposition was of presenting these clinic cases and concepts in order share them, offering free access to the content along images, surface electromyographies, computerized kinesiography, scanned before and after the therapeutic process. Cases of tridimentional orthodontics and neuromuscular phisiologic reabilitation of the second phase of treatment, after the TMJ treatment, were also included.

FINAL

The TMJ Study and Investigation Page completed in the month of December, three years of life.

I remembered to celebrate on the first anniversary of the Page.

In the middle of the work with patients, teaching and publications I did not remember to celebrate the second year.

I want to celebrate these three years with you.

With this project, we have a place in the Internet that presents a line of work known as neuromuscular physiologic dentistry, which takes into account the whole body system. It is an area which acts on posture, mandibular functioning and considers the entire body system.

In order to do that, the neuromuscular physiologic dentistry aims to establish, in the patient, a position that is based on a harmonious relation between the muscles, the teeth, and the temporomandibular joints.

MARCUS LAZARI frontal E SAGITAL

In the publication of this year’s end I have chosen the most significant images of all these years of publications, with direct links to each of the original publications.

At the end of this publication I placed the links of the publications of the first year of this page.

3 ANOS DE PUBLICAÇÕES 2

The TMJ Study and Investigation Page  has grown tremendously and continues to receive visitors from all over the world.

Thank you!

Lidia Yavich

Temporomandibular Joint Pathology in a Patient with Congenital Fusion of two Cervical Vertebrae. First and Second Phase. Case Report.

33 FINAL

Postural Improvement in a Patient after Neuromuscular Physiological Mandible Repositioning Treatment. Patient with Scoliosis Surgery and Craniomandibular Symptomatology.

24

TMJ Pathologies Treatment: Patient with Severe Headaches and Temporomandibular Joint Pain with Significant Contour Irregularities in the Mandibular Condyle and Mouth Opening Limitation.

27 CEF COMPARATIVAS ingles

Reestablishment of the Bone Marrow Signal in a case of Avascular Necrosis of the Mandibular Head. Monitoring two years after treatment.

FRONTAL COMPARATIVAS ESQUERDA 2016

Neuromuscular Physiological Treatment in a Patient with Headache and Pain in the Temporomandibular Joints. Case report without possibility of Disc Recapture: first and second phase.

10 abre e fecha inicial

FINALE FINALE

TMJ Pathologies Treatment: Patient with Pain in the Back of the Head, Bilateral Tinnitus and Constant Teeth and Prosthesis Fracture. First and second phase. Case Report.

ITACIR COMBINADA

TMJ Pathologies Treatment: Patient with headache for 30 years. Neuromuscular Physiological Rehabilitation. First and second phase. Case Report.

1 FOTOS FRENTE

TMJ Pathology in Professional Musicians: A look beyond the risk factors. Physiological Neuromuscular Rehabilitation. First and second phase. Case Report.

HELLA

TMJ Study and Investigation Page. One year of publication

INITIAL

2

The TMJ Study and Investigation Page  has grown tremendously and continues to receive visitors from all over the world.

Thank you!

Lidia Yavich

Neuromuscular Physiological Treatment in a Patient with Headache and Pain in the Temporomandibular Joints. Case report without possibility of Disc Recapture: first and second phase.

 

I often observe the debate on etiology and therapeutics, especially in TMJ dysfunction discussions groups, which are integrated by patients and professionals. These groups are active not only in Brazil but in several countries and communities from around the world.

I hope this space will add, strengthen or clarify those discussions.

The professional who treats patients with TMJ pathology has to take into account, at the moment of studying the clinical case, the patient’s particularities and the anatomical structures that are involved and provoking pain and affliction to our patient.

Even if the professional is scrupulous, evolutions can be different from patient to patient. That is why the professional has to investigate carefully which are the structures that can improve or even heal and which are the ones that cannot improve or still which ones we do not know if can be improved in the process of treatment.

Recognizing what we do not know is perhaps more important than recognizing  what we do know: and the communication of this understanding to the patient is essential.

When we start a treatment we must be certain of the structures we can meliorate, or even prevent of getting worse  and we also must know which structures  we DO NOT HAVE THE CONDITION TO MELIORATE and we certainly must communicate that to the patient. Within this framework, the most important thing is to investigate if  we can improve the quality of life of the patient.

1 FOTO FRONTAL

Female patient with 45 years old arrives to the clinic for consultation suffering from headache every day, also suffering from neck pain and pain in the back of the neck, pain in both temporomandibular joints and severe pain on the shoulders.

Pain is more intense on the left side.

2 FOTO PERFIL - Copia

The patient reports a sensation of plugged ears and hearing decrease which was confirmed by an audiometry that refers normal hearing at  4KHZ and a severe sensorineural hearing loss at 6 KHZ and moderate at 8 KHz in the right ear.

The left ear has normal hearing thresholds.

The patient presents a buzzing in the left ear, and peculiar noises.

3 DENTES INICIAIS - Copia

Patient’s habitual occlusion in the consultation day. Note patient’s overbite.

The patient reports that she wakes up with pain in the teeth, because of clenching.

4 OCLUSAIS INICIAIS - Copia

Patient’s upper and lower oclusal view before treatment. Note the wear of the lower anterior teeth. The patient states that have made maxillary anterior teeth reconstruction with resin due to attrition caused by bruxism.

5 PANORAMICA INICIAL - Copia

Patient’s panoramic radiograph before treatment. Absence of teeth 18,28,48.

Tooth 38 in a horizontal position, impacted

Reabsorption of the alveolar ridges.

6 LAMINOGRAFIA INICIAL - Copia

Radiographic image of the right and left temporomandibular joints in closed and open mouth. Flattening of the anterior superior and posterior superior surface of the left articular process.

7 TELEPERFIL

Patient’s lateral radiograph in habitual occlusion before treatment. Rectification of the cervical spine.

8 FRONTAL

Patient’s frontal radiograph in habitual occlusion before treatment.

9 C7

Patient’s lateral radiograph and cervical spine in habitual occlusion before treatment. Rectification of the cervical spine.

10 abre e fecha inicial

Patient’s computerized kinesiographic record before treatment. Patient without mouth opening restriction. Decreased closing speed, typical graph of an incisal guide that interferes with the closing trajectory.

11 RNM INICIAL DIREITA FECH

Sagittal slices of the right closed TMJ. The mandible heads presents irregularities and cortical and subcortical sclerosis. Degenerative process.

The right articular disc shows small size, change in signal intensity and degenerative morphostructural aspect. It is anteriorly displaced.

11B RNM INICIAL aberta dir

Sagittal slices of the right open TMJ. The articular disc shows small size, is anteriorly displaced WITHOUT REDUCTION WHEN THE MOUTH OPENS.

12 RNM INICIAL DIR FECH

Another sagittal internal slice of the right closed TMJ showing cortical bone irregularities. Degenerative aspect.

The articular disc shows small size, change in signal intensity and degenerative morphostructural aspect. It is anteriorly displaced, WITHOUT REDUCTION WHEN THE MOUTH OPENS.

12B RNM INICIAL aberta dir

Another sagittal slice of the right open TMJ. The articular disc shows small size, is anteriorly displaced WITHOUT REDUCTION WHEN THE MOUTH OPENS.

13 RNM INICIAL esquerda FEC

Sagittal slices of the left closed TMJ. Mild contours irregularity with rectification of the superior aspect of the mandibular condyle. The articular disc presents reduced dimensions.Alteration in orientation of the mandibular condilar axis because of traumatism in infancy. The disc is anteriorly displaced, WITH REDUCTION WHEN THE MOUTH OPENS.

14B RNM INICIAL esquerda aberta

Sagittal slice of the left open TMJ. THE DISC REDUCES WHEN THE MOUTH OPENS.

15 frontais iniciais

Frontal slice of the right and left temporomandibular joints, closed mouth. Note the cortical discontinuity on the right side already registered in the sagittal sections of the same side. The left side shows a medial disc deviation.

16 REGISTRO INICIAL

The masticatory muscles of the patient were electronically deprogrammed and a DIO (intraoral device) was constructed in neurophysiological position. In other publications computerized kinesiographic methods were mentioned.

In occlusion most often the healthy or pathological condition of the inter-oclusal space is not objectively considered. In this case the pathological free space of the patient is almost 7, 4 mm

16A ortese inicial so frontal

With this data and ALWAYS WITH THE INFORMATION OF THE IMAGES OBTAINED WITH THE MRI, we built a DIO (intraoral device) to keep the three-dimensionally recorded position.

One year after the beginning of neurophysiological treatment, the patient had to interrupt the treatment to undergo a spine surgery.

The patient returned 10 months after the interval, recovered from the intervention. The patient was  then again documented to assess any changes that might have happened during the interruption and the spine surgery.

17 FOTO frontal reinicio de tratamento 1

Patient’s postural comparative frontal images: before treatment and restarting therapeutic after the spine surgery.

18 FOTO PERFIL reinicio de tratamento 2

Patient’s postural profil comparative images: before treatment and restarting therapeutic after the spine surgery.

19 ORTESE REINICIO DE TRATAMENTO

The masticatory muscles of the patient were AGAIN electronically deprogrammed and NEW DIO (intraoral device) was built in neurophysiological position.

20 PANORAMICA COM ORTESE

Patient’s panoramic radiograph with the DIO (intraoral device) built in neurophysiological position.

21 LAMINOGRAFIA COM ORTESE

Patient’s right and left temporomandibular joints laminography  in closed and open mouth  with the DIO built in neurophysiological position.

22 TELEPERFIL COM ORTESE

Patient’s lateral radiograph with the DIO built in neurophysiological position.

23 C7 COM ORTESE

Patient’s lateral and cervical spine radiograph with the DIO built in neurophysiological position.

PATIENT’S ANALYSIS AT THIS STAGE OF THE TREATMENT.

Patient with degenerative processes not only in the temporomandibular  joints but also in the cervical spine and lumbar spine which led her to surgery.

Inability to recapture of the right TMJ disk. Whereby this was an objective that was not taken into account.

Remission of symptoms and improvement of  life quality.

Physiological mandibular posture, recovery of free space interocclusal through the DIO (Intraoral device).

In this particular case even WITHOUT DISC RECAPTURE (CONDITION THAT WAS EXPLAINED IN THE DIAGNOSIS)  the patient can pass into the second phase, always taking into account that we should protect the joint during the night and during physical activity.

Each case is unique and the decision to move to a second phase also needs an individualized study.

It was decided to begin the SECOND PHASE of treatment to remove the DIO (intraoral device), keeping the neurophysiological occlusion.

26 orto 1

For this we used a three-dimensional orthodontics, where the teeth are erupted in order to reach the new neurophysiological position.

27 orto 2

In the second phase, in this case the three-dimensional orthodontic the patient is monitored and electronically deprogrammed. The device is often  recalibrated or replaced, to maintain the position obtained in the first phase.

28 orto 3

In the second phase, in this case the three-dimensional orthodontic the patient is monitored and electronically deprogrammed. The device is often recalibrated or replaced, to maintain the position obtained in the first phase.

In this sequence the patient is still with the DIO (intraoral device)  in the mouth.

29 retirada da ortese

Removal of the DIO (intra oral device)

30 orto final

Completion of the second phase of the neurophysiological treatment in this case with a three-dimensional orthodontics. 

The second phase is here understood as the three- dimensional orthodontics, restorative, prosthetic procedures in accordance with each clinical case in order to remove the DIO, while maintaining the neurophysiological position obtained in the first phase.

31 oclusais finais

Patient’s upper and lower oclusal views after completion of the three-dimensional orthodontics.

32 LAMINOGRAFIA final

Patient’s right and left temporomandibular joints laminography in closed and open mouth  in neurophysiological position after finalization of the treatment.

33 panoramica  final

Patient’s panoramic radiograph in neurophysiological occlusion in the completion of treatment. The tooth 38 that was in a horizontal and impacted position was extracted since the patient had no more symptoms of joint pain.

34 TELEPERFIL final

Patient’s lateral radiograph in neurophysiological occlusion in the completion of the second phase of neurophysiological treatment.

NOVA RESSONANCIAS FINAIS

Temporomandibular joints MRI after de finalization of the second phase.

We must remember that this is a patient with degenerative processes and impossibility of recapture of the right TMJ disc, the left disk is so damaged that it does not fulfill its function.

The patient no longer has symptoms.

The final MRI shows no worsening of the situation and in the frontal slice it shows a better three-dimensional location of the mandibular condyle and cortical improvement.

36 B radiog laterais comparativas menor

Patient’s lateral comparative radiographs: at the beginning of treatment in habitual occlusion, during treatment after the spine surgery interruption with the DIO (intraoral device) in neurophysiological occlusion and after completion of the three-dimensional orthodontics in neurophysiological occlusion.

35 registro COMPARATIVOS

Comparative records of mandibular rest position at the beginning of the treatment to build the DIO (intraoral device), and at the end of the second phase of the treatment (tridimensional orthodontics) to build a DIO (intraoral device) for night use.

Notice that in the beginning of the treatment the patient had a pathological interocclusal space of 7.4mm, and in the record at the end of the second phase for the nocturne DIO the patient has 3.3mm of free interocclusal space.

We have to take into account that  the free interocclusal space IS A THREE-DIMENSIONAL SPACE, AND WHEN WE HAVE STRUCTURAL DIFFERENCES IN THE JOINTS, THE SPACE IS NOT EQUAL ON THE RIGHT AND THE LEFT SIDE.

35 iimagens comparativas de perfil

Patient’s  comparative profil postural images: at the beginning of treatment in habitual occlusion, during treatment after the spine surgery and treatment interruption with the DIO (intraoral device) in neurophysiological occlusion and after completion of the three-dimensional orthodontics in neurophysiological occlusion.

36 iimagens comparativas frontais

Patient’s frontal comparative postural images: at the beginning of treatment in habitual occlusion, during treatment after the spine surgery and treatment interruption with the DIO (intraoral device) in neurophysiological occlusion and after completion of the three-dimensional orthodontics in neurophysiological occlusion.

37 DEPOIMENTO

I had made several appointments with specialists, such as otorhinolaryngologist, dentists and maxilo-facial surgeons. However, all of them were without success and that is when I looked for Dr. Lidia to whom I reported the following symptoms.

I used to wake up every day with a lot of pain on the left side, both in the head and neck and I used to feel a rigidity on the neck and shoulder. In that time I used to take painkillers every single day in the morning. I also used to suffer of a serious problem of bruxism and because of that I wore out my front teeth, both the upper and lower teeth, and I had to restore them. I used to feel a lot of pain from the tremendous pressure that I used to make between the lower and upper part of my mouth. Another symptom was the high sensitivity on the teeth when I drank cold liquids. I felt as my ears were always blocked in such a way that my hearing decreased. I also used to hear a noise, especially on the left side, which sounded like a continuous whistle.

38 DEPOIMENTO

I also told the doctor that when I was a child I was hit with a brick, in the middle of a child’s play.

After reporting all that she asked me to make many exams and many of them were made in the MY Clinic and finally she told me that I had a problem in the TMJ. I started a treatment with her in 2011. I started to use an acrylic splint on my lower teeth day and night, all the time, taking it of only for its hygiene.

The pain that I used to feel so much decreased and in short time I did not feel it any more. Doctor Lidia had to adjust the orthotic monthly, making exams in her clinic until it reached the optimal height. On the next year from when I started the treatment I had to interrupt it for 8 or 10 months because I had to make a column surgery but I returned to the treatment as soon as I was well enough. I kept on treatment for one more year and after that I started the second part of the treatment with braces.

39 DEPOIMENTO

At the time that the treatment ended I did not need to use any more braces nor the full time orthotic. Today I need to use the orthotic only when I do physical activities and to sleep. I never again felt the horrible pain that I used to feel. I also never felt again the sensation of having blocked ears and happily the noise reduced. Today I am very happy that I do not have to take daily painkillers and that I do not have any pain. I am very grateful to doctor Lidia because she discovered and solved my problem.

evento setembro2

For the interested coleagues in this training: the course starts at the September 1st.
Please write to the email for more informations:  lidiayavich@gmail   ou  lidiayavich@clinicamy.com.br
+55 5130612237    +55 5133322124       This course will be given in Portuguese

Postural Improvement in a Patient after Neuromuscular Physiological Mandible Repositioning Treatment. Patient with Scoliosis Surgery and Craniomandibular Symptomatology

The interrelationship between mandibular posture, occlusion and body posture is a topic covered by different health professionals.

When we speak of occlusion we do not mean only the relationship between the dental arches but we are also referring to the balance between teeth, muscles and temporomandibular joint in connection with all the postural scheme. In that way we can see and analyze patient as a whole.

This clinical case report describes a patient who came to the clinic for consultation after a scoliosis surgery, with craniomandibular symptoms and loss of vertical dimension.

Scoliosis is a three-dimensional structural deformation of the spine.

Idiopathic scoliosis is probably multi aetiological

The prevalence of the association between scoliosis and craniofacial anomalies should stimulate multidisciplinary collaboration on treating these patients, especially when we have an early diagnosis.

1 a

Patient narrative: brief history of the surgery:

When I was 14 years old I was diagnosed with scoliosis, after being noticed with a deformation on the back. Several medical experts were consulted and they stated the same diagnosis, however none of them could tell the causes, and they added that it could be related  to a malformation, some `trauma` in the growth phase, maybe being a hereditary problem.

“My mother noticed that the left side of my back was higher than the right side. In this period I also had frequently faints. Therefore, tests were performed, such as blood tests, electrocardiogram and electroencephalogram. They did not present any alteration”

“Concerned about the situation we consulted an orthopedic surgeon who ordered the realization of a panoramic X-ray of the spine. That test  showed a lumbar scoliosis of 25 degrees, for which the doctor recommended physical therapy.”

1 B JANELA

Panoramic radiographs of the spine were photographed on a glass of the window on day light, that’s why we can observe elements of the landscape.

22- 10 -2004  1

Cervicothoracic  Scoliosis. Left convexity, Cobb angle of 25 degrees. No significant pelvic difference.

“Initially, with about 25 degrees of curvature, I did physical therapy sessions and follow-up for a month.”

“I also used an insole ( which I stopped using it  because I did not perceive results and I felt no need) at the time I was also treating a cross bite.”

25-08-2004   2

Thoracic-lumbar scoliosis, left convexity, C0bb angle of 44 degrees. Accentuation of lumbar lordosis difference of the femoral heads of 3 mm.

“Clinical tests revealed that the curvature had evolved progressively to more than the double in size, reaching approximately 45 degrees. At the time, the proposed solution was the use of a neck vest in order to curb this trend.”

4-11-2004  3

X-rays taken for scoliosis treatment control with orthopedic brace.

“The vest was being used 22 hours per day, and it was also recommended swimming lessons for greater flexibility and aid in respiration in case of surgery.”

“During this period, there was a monitoring and vest readjustment in every month.”

“Finally, this alternative was not efficient enough, as the bending progressed to 64 degrees.”

15-02-2005  4

X-rays taken for scoliosis treatment control with orthopedic brace.

todas juntas

“Thus, according to doctors, we reached the surgical case.”

At my 16 years old, I had the surgery on my spine. The recovery was gradual, nonetheless restfull. The pains, which were always absent, were felt not often in the hip area and legs. The bend in my spine regressed to 19 degrees.”

CONTROL REPORT OF COLUMN XR PANORAMIC SPINAL AFTER SURGERY:

Radiographic examination performed for surgical treatment control of Thoracic-lumbar scoliosis, left convexity fixed by metal screws and rods.

“After a year, I was released to engage in any sport mode, which until then I was forbidden to practice.”

REASON FOR THE CONSULTATION AT CLINIC MY:

“After dental treatment (crossbite) with another professional, mainly due to a shift in the cervical spine that I had tried to fix at the same time – but I did not had  another solution unless the surgery, which had already been completed – I was guided to proceed with Dra. Lidia, also to investigate the relationship between the two cases, so far no connection, the dental arch and the cervical spine. ”

“Following the derivation, I met Dr. Lidia to whom I presented my case, including the surgery of the spine, which led her to investigate the links that could be  cause and consequence of the whole problematic. After many conversations and clarifications I surrendered to the treatment.”

1The patient arrived to the clinic for consultation after a spine surgery, complaining of headache, frequent fatigue, pain behind the eyes, pain in the shoulders and clenching.

2 perfil direito e esquerdo

Patient’s postural photographs of right and left profile after the spine surgery before the neurophysiological treatment.

3 frente e costas

Patient’s frontal and back postural photographs after the spine surgery before the neurophysiological treatment.

4d locais da dor

Part of the medical record where the patient marks the points where feels pain.

5 DENTES INICIAISPatient’s habitual occlusion on the day of consultation after spine surgery and the completion of orthodontic treatment before the neurophysiological mandibular repositioning.

6 oclusais iniciaisPatient’s superior and lower oclusal view on the day of consultation after spine surgery and the completion of orthodontic treatment before the neurophysiological mandibular repositioning.

7 panoramica inicial

Patient’s panoramic radiograph on the day of consultation after spine surgery and the completion of orthodontic treatment, before the neurophysiological mandibular repositioning.

Remodeling apical teeth 11,21,22,33,43 compatible with orthodontic movement.

8 laminografia inicial

Patient’s temporomandibular joint laminography in habitual occlusion, closed and open mouth, both sides on the day of consultation after spine surgery and the completion of orthodontic treatment, before the neurophysiological mandibular repositioning.

Asymmetrical head of the mandible: the left one with a facet in the posterior surface and a change of orientation in the vertical axis.

9 teleperfil inicial

Patient’s lateral radiograph in habitual occlusion on the day of consultation after spine surgery and the completion of orthodontic treatment, before the neurophysiological mandibular repositioning.

Note the beginning of the cervical curvature inversion at C4 level.

10 FRONTAL

Patient’s frontal radiograph in habitual occlusion on the day of consultation after spine surgery and the completion of orthodontic treatment, before the neurophysiological mandibular repositioning.

Note the loss of vertical dimension.

11 C7

Patient’s lateral radiograph and cervical spine in habitual occlusion on the day of consultation after spine surgery and the completion of orthodontic treatment, before the neurophysiological mandibular repositioning.

Note the the cervical curvature inversion at C4 level.

11 RESS DIR 1 BOCA FECHADA

MRI of the right TMJ:

Sagittal section, closed mouth; there is an anteversion of the mandibular condyle, discrete rectification of its anterosuperior portion.

11 RESS DIR 2 BOCA FECHADA

MRI of the right TMJ:

Sagittal section, closed mouth; there is an anteversion of the mandibular condyle, discrete rectification of its anterosuperior portion.

Mild cortical irregularity of the anterior-posterior edge of the condyle.

11 RESS ESQ  1 BOCA FECHADA

MRI of the left TMJ:

Sagittal section, closed mouth; there is an anteversion of the mandibular condyle, discrete rectification of its anterosuperior portion.

11 RESS ESQ  2 BOCA FECHADA

MRI of the left TMJ:

Sagittal section, closed mouth; there is an anteversion of the mandibular condyle, discrete rectification of its anterosuperior portion.

Traumatism history reported by the patient

1 – Fall off a wall of approximately 1.50m tall. She fell on her back hitting the back of the head on the ground.

2- Sudden braking in the car. She was pushed against the windshield, but was held by her father.

3 – Bicycle fall. The pacient was taking a ride on the rack of a friend bycicle when she fell and and hits the mouth on the floor.

11A eletromiografia dinãmica habitualPatient’s electromyography record in habitual occlusion. Asymmetry between the right and left temporal muscles and asymmetry between the masseter muscles.

The most important thing in this case is the greater activity of the temporalis  muscles in relation to the masseter muscles. Remember that the muscles that must recruit more motor units in maximum intercuspation are the masseters and not the temporalis muscles.

12 registro neurofisiológico

Mandibular rest neurophysiological position record.

The masticatory muscles of the patient were electronically deprogrammed and a new neurophysiological rest position was recorded.

The patient had a pathological free way space of 5 mm and a shift to the right of 1,5 mm.

With the data obtained after the mandibular electronic deprogramming and ALWAYS WITH THE INFORMATION OBTAINED FROM THE IMAGES, a DIO (Intraoral device) in neurophysiological position was constructed.

13 DENTES ORTESE

DIO: Intraoral Device constructed in neurophysiological position.

14 ELETROMIOGRAFIA  controle da ortese

Electromyography dynamic record of the patient with the DIO built in neurophysiological position.

In the first selection we can already observe a symmetry between the anterior temporalis muscles.

In the last selection with cotton rolls on both sides it can be observed an improvement in the recruitment of motor units in the masseters muscles and even lower recruitment in the anterior temporalis muscles. Remember that the DIO (Intraoral Device) is tested and calibrated  with Bioinstrumentation.

14A controle da ortese

Kinesiographic control of the DIO. Freeway interocclusal space of 2.6 mm and shows no deviation on the frontal record.

15 FRONTAIS COMPARATIVASFrontal radiographs comparison: the first in habitual occlusion and the second with the DIO (Intraoral device) in neurophysiological position. Improvement on the three-dimensional jaw alignment.

We cannot fix the structural differences of the mandibular condyles, but we can balance the muscles.

16RX  laterais COMPARATIVASLateral radiographs comparison: the first in habitual occlusion and the second with the DIO (Intraoral device) in neurophysiological position.

17 C7 COMPARATIVAS

Lateral and cervical spine radiographs comparison: the first in habitual occlusion and the second with the DIO (Intraoral device) in neurophysiological position.

18 LAMINOGRAFIAS COMPARATIVAS

Patient’s TMJ laminographies comparison: the first in habitual occlusion and the second with the DIO (Intraoral device) in neurophysiological position.

19 RADIOGRAFIAS PANORAMICAS COMPARATIVAS

Patient’s panoramic radiographs comparison: the first in habitual occlusion and the second with the DIO (Intraoral device) in neurophysiological position.

20 ress COMP dir  1 e 2Right TMJ sagittal section, closed mouth comparison: before treatment in habitual occlusion and with the DIO (Intraoral device) in neurophysiological position.

21 ress COMP ESQ  1 e 2

Left TMJ sagittal section, closed mouth comparison: before treatment in habitual occlusion and with the DIO (Intraoral device) in neurophysiological position.

22D Comparativas de perfil com e sem ortese

Patient’s postural profile comparative images in habitual occlusion before the treatment, in the beginning of the treatment wearing the DIO (Intraoral Device) and as we can see in the third photograph) in the stage that alouds us to perform the second phase of the treatment with a tridimensional orthodontics.

23 DComparativas de frente com e sem ortese e inicio de orto

Patient’s postural frontal comparative images in habitual occlusion before the treatment, in the beginning of the treatment wearing the DIO (Intraoral Device) and ( as we can see in the third photograph) in the stage that alouds us to perform the second phase of the treatment with a tridimensional orthodontics.

After treatment:

PATIENT TESTIMONY:

Especially the headaches (frontal) and the tension in the trapezius, along with the other listed symptoms, which hindered my work and productivity, were easily controlled with the treatment.

I am grateful to Dr. Lidia Yavich and the Clinica MY team for the profissionalism and which always had great care and attention, in the connection of the teeth, face and temporomandibular joint with the spine and posture.

For reasons of study and work opportunities, I chose to take a break in treatment, before starting a three-dimensional orthodontics.

I kept on inued with the continuous  use of the DIO – the pain is still being controlled – until I had the conditions to finalize the treatment.

Description of habitual orthostatic position in the sagittal and frontal planes

24

Sagittal plane:

The evaluation is described according to the plumb line test. This test takes into account the anatomical points that must be aligned with the vertical axis (plumb line) that is perpendicular to the horizontal axis (foot rest surface). The points are the lateral malleolus (specifically in calcanocuboidea joint), the joint center of the knee, the hip center (located in the femoral head), the lumbar vertebrae (L3 – L4), the center of the shoulder joint (acromion) and the external auditory meatus (ear ).

Picture 1 – patient in habitual occlusion before treatment:                     

 

It is observed that the patient is with the body in front of the plumb line. This shift of the reference points is observed from the knee joint in direct side view.

Picture 2: Patient using the intraoral device at the beginning of the treatment

Note that in this situation the patient is with the joint reference points ahead of the plumb line, but there was an approximation of the body segments shoulder and external auditory canal in the direction of the plumb line.

Image 3: patient using the intraoral device ready to move to a three-dimensional orthodontics

It is observed in this image that the patient is more aligned in upright posture, where all the reference points are aligned or closer to the vertical axis. The lower back and ear still remained ahead of the regency axis.

According to the three images it can be seen an improvement in the alignment of the orthostatic position in the sagittal plane throughout the treatment. Initially the patient was possibly with the muscles of the posterior chain overloaded from the soles of the feet to the suboccipital region.

Probably the use of intraoral device relieved such overloading .

25

Frontal plane

In the frontal view, the description of the usual orthostatic position is made in relation to the plumb (vertical axis) and two horizontal axes: horizontal axis of surface supporting feet and horizontal axis that passes just above the shoulders. The reference points in the frontal plane are: midpoint between the two feet, pubic symphysis, xiphoid process (sternum center) center of the cervical vertebrae (spinous processes) and the midpoint between the eyes.

Picture 1: Patient in habitual occlusion before treatment

It is observed the following displacements in relation to the vertical axis: slight displacement of the pubis point to the right side of the patient, followed by a displacement of the rib cage (xiphoid process) to the left side. The neck and head region are displaced to the left side of the vertical axis.

In relation to the horizontal axis of the bearing surface and from above the shoulders, it is observed that the right shoulder is lower than the right one. According to this image it can be said that she has escolise or that she is in a postural attitute presenting scoliosis.

Picture 2: Patient using the intraoral device at the beginning of treatment

In image 2 it is possible to observe that the position of the pelvis remained slightly shifted to the right side of the vertical axis. However there was an approximation of the xiphoid process (the center of the sternum) in relation to the vertical axis, as well as to the cervical vertebrae and head. These segments still kept themselves to the right side of the reference point.

In relation to the horizontal reference axis, there is a better alignment of the shoulders. The left shoulder remains in a lower position than the left one. In this image it can be said that the patient has a scoliotic attitude whith the lower spine angles of lateral flexing smallers, in other words there is a change in the support, right where  the scoliotic attitude is milder.

Image 3: patient using the intraoral device ready to move to a three-dimensional orthodontics

From this photo it can be seen that there has been an alignment of reference points of the pubis and the xiphoid process in relation to the vertical axis. In addition, there was a repositioning of the cervical vertebrae and head, where the  reference points are closer to the reference axis. In relation to the horizontal axis the image shows a balanced alignment of the shoulders.

From the three images of the frontal plane it can be observed that there was an improvement in the usual orthostatic posture, however there is still a displacement of the cervical and head reference points to the left side of the vertical axis.

It can be suggested that before treatment the patient showed a distribution of a possibly assimetric body weight between the right and left feet. The pelvis shifted to the right, generates such imbalance. In the  high thoracic and cervical region, probably there was a shortening of the muscles of the left side chain and an overload of the right side chain. With the DIO probably these imbalances  were mitigated  in the habitual orthostatic posture.

This evaluation in orthostatic position is not a dynamic evaluation of the patient.

I appreciate this assessment to Cintia Brino Baril, Master in Science of Human Movement UFRGS.

TMJ Study and Investigation Page. One year of publication

Dear friends,

At December 2014 I started the Project TMJ Study and Investigation Page. At first, all its content was offered in three languages: Portuguese, English and Spanish. Due to the analysis of the webpage access statistics, at March 2015 I decided to offer the content solely in Portuguese and English.

Nowadays, the medicine based on evidence is hierarchically stratified from top to bottom where in the base of the pyramid we find the clinic cases, which are rarely seen as evidence. The TMJ Study and Investigation Page had, in its conception, the purpose of posting the clinic cases, which were carefully published with the documentation related to each of the patients treated at Clínica MY with pain complaints, dysfunction and TMJ pathology.

INITIAL

The proposition was of presenting these clinic cases and concepts in order share them, offering free access to the content along images, surface electromyographies, computerized kinesiography, scanned before and after the therapeutic process. Cases of tridimentional orthodontics and neurophisiologic reabilitation of the second phase of treatment, after the TMJ treatment, were also included.

site em portugues nova ingles

The TMJ Study and Investigation Page is completing, in this month of December, one year since it started, and I want to celebrate its anniversary with you. With this project, we have a place in the Internet that presents a line of work known as neurophysiologic dentistry, which takes into account the whole body system. It is an area that also operates regarding the posture and the mandibular functioning. In order to do that, the physiologic dentistry aims to establish, in the patient, a position that is based on a harmonious relation between the muscles, the teeth, and the temporolandibular joints.

site em ingles novaIn the publication of the end of this year I have chosen the most significant images of the whole year of publications, with their direct links to each one of the originals publications.

31

Joint Decompression in a Neurophysiological Mandibular Rest Position Promotes a Positive Remodeling in a Degenerative Process of a Teenager Temporomandibular Joint

english 1-1

Anatomy is the platform on which physiology functions

Sem Título-1

Structural modifications of the mandibular condylar process as one of the sequels of traumatism in infancy.

26

Articular discs recapture with mandibular neurophysiological repositioning

26

Cervical Dystonia or Spasmodic Torticollis: Positive evolution after Neurophysiological Treatment

2

Recapture of articular disc displacement with reduction. Recapture or not recapture that is the question.

17 COLUNA E PERFIL COMP

Inter relation of Craniomandibular disorders and vertebral spine. Case report

24

Tridimensional Orthodontics in the Second Phase of TMJ Pathologies

FINAL

Neurophysiological Combined Orthodontics and Rehabilitation: patient with degenerative conditions in several body joints

FINAL

TMJ Pathologies Treatment: first and second phase (tridimensional orthodontics) in a hypermobile joint patient with low signal in the head of the mandible bone marrow. Case report.

33

Articular Disc Recapture: patient with significant mandibular heads asymmetry and unilateral reducible luxation. Case report

Sem Título-1

Osteonecrosis of the Mandibular Head: recovery of condylar bone marrow alteration

6 BASAL ANTES E APOS O DEM

TMJ ( temporomandibular joint) Pathologies: Patient with severe pain in the region of the face, neck and temporomandibular joint. First and second phase.

18 comparativas

Patient with Ankylosing Spondylitis and non inflammatory TMJ pathology

15 3D comparativas

Mandible Condyle Fracture Consolidation by Neurophysiological Alignment of the Segments, Four Months after Unsuccessful Surgery. Case report

37 poster

The importance of Mandibular Rest Position by Electronic Deprogramming in the Treatment of Temporomandibular Joint Pathologies, Orthodontic Diagnosis and Oral Rehabilitation. Case report.

41 RNM AFTER TREATMENT cor

TMJ Pathologies in Children and Teenagers the Overlooked Diagnosis

evento 4

Training in Diagnosis and Treatment of TMJ Pathologies

31

The Postural Position of the Mandible and its Complexity in the Maxillomandibular Tridimensional Relation: first and second phase in a patient with severe symptoms with subtle information on the images.

e images.

26B LATERAIS COMPARATIVAS LINHA

The Tridimensional Neurophysiological Position of the Mandible in Implant Prosthesis Protocol

I want to thank my family that is always at my side in each one of the projects, I also want to thank my friends, that from Brazil and from many places of the world, supported and support this project. Last, but not least, I want to thank my colleagues and patients that often write, encouraging and thanking the existence of this virtual place.

By closing, in this moment, the annual analysis and the perspective for the year that follows, I therefore thank the readers of all places in the world that follow the TMJ Study and Investigation Page. It is a privilege to count with your visits.

With the best votes for 2016, and wishing for a year of peace, health, love and happiness for all.

Dr. Lidia Yavich

 

The Postural Position of the Mandible and its Complexity in the Maxillomandibular Tridimensional Relation: first and second phase in a patient with severe symptoms with subtle information on the images.

Understanding the complex inter relation of  craniomandibular disorders require a wide comprehension not only on anatomy and physiology of head and neck, but also of the vertebral spine. The cervical spine is the flexible link between the head and the trunk.

Only recently, dentistry began to think about the jaw and its association with the skull as a three-dimensional relationship, instead of considering it an isolated structure and evaluated in two dimensions as has been done traditionally.

To properly evaluate the maxillomandibular relationship we should start considering the physiological rest position.

Physiological rest is a concept, applicable to the rest of the body muscles

The stomathognatic muscles and not the exception

1 FRONTAL Male patient arrived to the clinic for consultation referring a strong pain behind the eyes, nonspecific facial pain, popping in the right temporomandibular joint and crackling on the same side.2 FRONTAL The patient reports tingling and numbness in the cervical spine, tingling sensation in his right shoulder. He also reports pain and stiffness in the back of the neck, shoulder pain and muscular tremor.

The patient had completed an orthodontic treatment and after the removal of the orthodontic device he began to feel the reported symptoms .3 PERFIL Due to the strong symptoms the patient consulted several professionals: clinical dentist, physiotherapist, general practitioner and a orthopedist for the  shoulder pain.

The orthodontist who treated him referred the patient to me, to see if I could help him.

4 MARCAÇÃO DA DOR

Section of the clinical record where the patient marks the pain points

 

Marking the pain points: headache, back of the neck stiffness, pain in the top of the head and in the forehead. Pain behind the eyes and in the back of the neck, popps, nonspecific facial pain, crepitus, dizziness and muscle tremor.

5 DENTESPatient’s habitual occlusion before treatment.

6 OCLUSALPatient’s occlusal superior and inferior view before treatment.

7 PANORAMICA INICIALPatient’s initial panoramic radiograph before treatment.

8 LAMINOGRAFIA INICIALPatient’s TMJ right and left laminography, closed and open mouth before treatment.

9 TELEPERFILPatient’s lateral radiograph before treatment.

10 FRONTALPatient’s frontal radiograph before treatment.

11 C7Patient’s lateral radiograph and cervical spine before treatment.

12 ELETROMIOGRAFIA INICIAL

Patient’s electromyography record in habitual occlusion before treatment.

In this dynamic record we registered the anterior right and left temporal muscles, the right and left masseter muscles, the right and left digastric muscles and the right and left upper trapezius muscles.

For this record we ask to the patient to open the mouth, close the mouth, clench strong and swallow.

Notice the asymmetry between the right masseter muscle and the left masseter muscle at maximal intercuspal sustained position. The digastric muscles during swallowing are activated before the masseter muscles which should not happen in a functional swallowing.

13 F CINECIO INICIAL

Patient’s initial kinesiographic record shows a significant loss of speed when the patient opens and closes the mouth. There is no coincidence between the neuromuscular trajectories in the sagittal view of the record.

The patient has hypermobile joints and has no limitation in opening the mouth.

13 A RES. ESQ 1 INICIAL MRI: sagittal slice left TMJ closed mouth. This image does not show significant alterations.

13 B RES. ESQ 2 INICIAL MRI: sagittal slice left TMJ closed mouth, this more medial slice shows the compression and the retroposition of the mandibular condyle. We can observe a facet on the top of the mandibular head.

REMEMBER THAT we are looking at a two-dimensional image and we have to understand that the COMPRESSION IS TRIDIMENSIONAL.

13 C RES. DIR 1 INICIAL  MRI: sagittal slice right TMJ closed mouth, this medial slice shows the compression and the retroposition of the mandibular condyle. We can observe a facet on the top of the mandibular head.

REMEMBER THAT we are looking at a two-dimensional image and we have to understand that the COMPRESSION IS TRIDIMENSIONAL.

13 D RES. DIR 2 INICIAL MRI: sagittal slice right TMJ closed mouth, in this medial slice is even more evident the compression and the retroposition of the mandibular condyle. We can observe a facet on the top of the mandibular head.

REMEMBER THAT we are looking at a two-dimensional image and we have to understand that the COMPRESSION IS TRIDIMENSIONAL.

13 E RESFRONTAIS INICIAIS

MRI: frontal slice from the right and left TMJ, closed mouth in habitual occlusion before treatment.

The right TMJ frontal slice makes clear a loss of joint space especially on the lateral pole.region  In both frontal images we can notice the reduction of the joint space.

13G REGISTRO NEUROFISIOLOGICOTo properly evaluate the maxillomandibular relationship we  should start considering the physiological mandibular rest position.

Physiological rest is a concept, applicable to the rest of the body muscles

The stomathognatic muscles and not the exception

The masticatory muscles of the patient were deprogrammed electronically and a new neurophysiological rest position was recorded.

14 ORTESE INICIAL With this data we constructed a DIO (intraoral device), to keep the three-dimensionally recorded position. This device must be tested electromyographically to objectively measure the patient.

Of course checking the patient’s symptoms is important, but the surface electromyography objectively shows if the muscular function improved, worst or did not change.

15 ELETROMIOGRAFIA COM O DIO Patient’s electromyographic record with the DIO (intraoral device), in neurophysiological position.

Note the symmetry of the masseter muscles. The digastric muscles DON’T ACTIVATE before the masseter muscles during swallowing. This implies that the patient closes the teeth and swallows and not the contrary as the first record in habitual occlusion.

16 CINCECIO COM DIO Patient’s kinesiographic record with the DIO (intraoral device): there has been an improvement in speed and COINCIDENCE in the trajectories when he opens and closes the mouth.17 FRONTAIS COMPARATIVAS Patient’s frontal radiographs comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

18 LAMINOGRAFIAS COMPARATIVAS Patient’s TMJ right and left closed and open mouth laminography comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

19 TELERADIOGRAFIAS COMPARATIVASPatient’s lateral radiographs comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

In the middle of the treatment I referred the patient to a physical terapist for a postural reprogramming.

With the jaw in a neurophysiological position the physiotherapist colleague worked on the rest of the muscular chains. The patient also presented an incipient discopathy at the level of C3 and C6.

20 PANORAMICAS COMPARATIVASPatient’s panoramic radiograph comparison: before treatment and during the neurophysiological treatment.20 A cinesiografias COMPARATIVAS Kinesiographic records comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

Note the improvement of the speed and the COINCIDENCE in the opening and closing trajectories.

20 A ELETROMIOGRAFIAS COMPARATIVAS Electromyography records comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

Note the symmetry of the masseter muscles, the digastric muscles DON’T ACTIVATE before the masseter muscles during swallowing. This implies that the patient closes the teeth and swallows and not the contrary as the first record in habitual occlusion before treatment.

21 ORTO The patient did not complained from pain and the other symptoms he had in the beginning of the treatment.The electromyography and kinesiographic records objectively showed the muscular function improvement.

We decided to start the SECOND PHASE of the treatment.

For this we used a three-dimensional orthodontics, where the teeth are erupted towards the new neurophysiological position. This procedure  will allow us, following the technical steps to remove the DIO.

22 ORTO 2  In the  second phase, in this case the three-dimentional orthodontics  the patient is monitored and electronically deprogrammed and many times the device is recalibrate to maintain the position obtained in the first phase.

23 ORTO Sequence of the second phase (in this specific clinical case).

24 ORTO Sequence of the second phase (in this specific clinical case).

25 ORTO Sequence of the second phase (in this specific clinical case).

26 ORTO Sequence of the second phase (in this specific clinical case).

27 ORTO Sequence of the second phase (in this specific clinical case).

28 ORTO2 Sequence of the second phase (in this specific clinical case).

29 ORTO

Second phase completed!

39 panoramica finalPatient’s panoramic radiograph after the finalization of the three-dimensional orthodontics.

30 ress comparativa frontal dir 1 MRI: Comparison of the frontal section of the RIGHT TMJ closed mouth  before neurophysiological treatment, and the same  RIGHT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint, especially in the lateral pole.

30 ress comparativa frontal dir 1 flecha

MRI: Comparison of the frontal section of the RIGHT TMJ closed mouth  before neurophysiological treatment, and the same  RIGHT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint, especially in the lateral pole. Note the arrows.

31 ress comparativa frontal esq 1 MRI: Comparison of the frontal section of the LEFT TMJ closed mouth, before neurophysiological treatment, and the same  LEFT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.31 ress comparativa frontal esq flecha 1MRI: Comparison of the frontal section of the LEFT TMJ closed mouth, before neurophysiological treatment, and the same  LEFT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint. Note the arrows.32 ressonancia comparativa 1 MRI: Comparison of the sagittal section of the LEFT TMJ closed mouth, before neurophysiological treatment, and the same  LEFT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.33 ressonancia comparativa 2

MRI: Comparison of the sagittal section of the LEFT TMJ closed mouth, before neurophysiological treatment, and the same  LEFT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.

34 ressonancia comparativadir 1 int

MRI: Comparison of the sagittal section of the RIGHT  TMJ closed mouth, before neurophysiological treatment, and the same  RIGHT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.

Improvement in the relationship between the mandibular condyle and the articular disk.

35 ressonancia comparativadir 2int MRI: Comparison of the sagittal section of the RIGHT TMJ closed mouth, before neurophysiological treatment, and the same  RIGHT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.

Improvement in the relationship between the mandibular condyle and the articular disk.36 eletromiografia final Patient’s electromyography record in neurophysiological occlusion AFTER THE FINALIZATION OF THE THREE DIMENSIONAL ORTHODONTICS.

Note the symmetry of the masseter muscles.

The digastric muscles DO NOT ACTIVATE before the masseter muscles during swallowing. This implies that the patient closes the teeth and swallows and not the contrary as the first record in habitual occlusion before treatment..

This means that the objectives achieved in the FIRST PHASE with the DIO in neurophysiological position were held after the finalization of the THREE DIMENSIONAL ORTHODONTICS.

37 eletromiografia comparativas Patient’s electromyography records comparison:

Before the treatment in habitual occlusion.

With the DIO (intraoral device), in neurophysiological position, during the FIRST PHASE of the treatment.

 AFTER THE FINALIZATION OF THE THREE DIMENSIONAL ORTHODONTICS.38 laterais comparativas

Patient’s lateral radiograph comparison:

Before the treatment in habitual occlusion.

With the DIO (intraoral device), in neurophysiological position, during the FIRST PHASE of the treatment.

 AFTER THE FINALIZATION OF THE THREE DIMENSIONAL ORTHODONTICS.

38 laterais comparativas 1

 Maxillomandibular values comparison: 

Before the treatment in habitual occlusion.

With the DIO (intraoral device), in neurophysiological position, during the FIRST PHASE of the treatment.

 AFTER THE FINALIZATION OF THE THREE DIMENSIONAL ORTHODONTICS.

41 OCLUSAO FINALIn a recent revision after two years of completion of the SECOND PHASE with the three dimensional, I registered the habitual patient’s occlusion.

The patient continues free of symptoms.

In the postural mandible position and its complex three-dimensional relationship with the maxilla little details are essentials, especially in a hypermobile joint patient.

It is not a case of deep bite, not a case where simply moving the incisive guide anteriorly could solve the problem.

In the  images the three-dimensional compression in this patient looks SUBTLE, but no less devastating.

Each case is different and every human being is a unique individual.

patient testimony

 In the first evaluation, Dr. Lidia was very helpful explaining to me all the method of the treatment and what was necessary to achieve the expected results.

 Along the way, I had neither more headaches nor joint pain, I was pain free.

Everyone in the team was very devoted to my treatment, and I had in the end an excellent result.

Today I am very grateful to Dr. Lidia and her team for all the attention.

Big huge to everyone from clinica my.

Patient with Ankylosing Spondylitis and non inflammatory TMJ pathology

Female patient, 40 years old comes to consultation referred by her rheumatologist WITH STRONG PAIN IN the TMJ (temporomandibular joint), TWINGES IN THE HEAD AND MOUTH OPENING LIMITATION.

The patient had a diagnosis of seronegative spondyloarthropathy until then nonspecific.Later diagnosed as Ankylosing Spondylitis

Seronegative spondyloarthropathies refers to a group of diseases that share common characteristics, including the occurrence of inflammation in the spine, peripheral joints and in various peri-articular tissues, in particular entheses.

Seronegative spondyloarthropathies laboratory outstanding feature is the absence of rheumatoid factor and auto antibodies. They have strong association with human leukocyte antigen HLA-B27.

1  The patient reports clicking on the right TMJ, difficulty to open the mouth, difficulty and paint in chewing. She also reports bruxism.2She reports feeling headache, neck pain, pain in the right eyebrow, pain behind the eyes, pain in the right shoulder. She also reports pain in both temporomandibular joints which is stronger  in the right joint.

Points where the patient reports pain

The patient marks on the record the most important points of pain.3  In the first consultation, during the anamnesis the patient reported that she had initiated a treatment for the bruxism problem, and that at one point with the device change she  began to feel a very strong pain and her mouth locked.

4The occlusal view shows the superior anterior sector wear and the anterior lower sector wear.5Patient’s panoramic radiograph.6The joints radiographic image shows the superior and posterior positioning of the articular process on the left side in the joint cavity when the jaw is in maximal intercuspal position.

In the maximum opening position, there is flattening of the posterior and anterior surface of the left mandibular condyle process and a flattening of the superior and anterior surface of the right mandibular condyle process. The right side also presents an alteration of the growth axis of the mandibular condyle.

6BPatient’s lateral and profile radiograph before treatment.7Patient’s lateral radiograph and cervical spine before treatment.7BPatient’s frontal radiograph in habitual occlusion before treatment.8 abre e fecha inicOpening and closing computerized kinesiographic record, the patient can open only 32 mm feeling strong pain, which shows an important limitation.

The patient also has a deflection of 2.7 mm to the right.8 B COMP abre e fecha inic Note in the skull graph, the left condyle moves more than the right condyle where the deviation is.

9The surface electromyography exam evaluates the superior anterior temporal right and left, the right and left masseter, the right and left digastrics and the right and left upper trapezius.

In this electromyography record the patient could not generate a good activity when we asked to bite hard (keeping the teeth in maximum intercuspation) and clench.

At the beginning of the record when we asked the patient to open the mouth it is important to note the different activity between right and left digastrics.

The left digastric activates double than the right digastric.

9

Image enlargement showing the difference in translation of the mandibular condyles. Patient in maximum mouth opening.

It is important to be able to understand and connect all the information, the surface electromyography and the computerized kinesiograph. These data still does NOT PROVIDE A DIAGNOSIS, However they are tools to help us in the diagnosis.

I asked the patient for an MRI-(magnetic resonance imaging) of the temporomandibular joints.

When the patient filled out the clinical record for the MRI she reported that she did a tattoo a month before, that prevented the realization of the MRI until completing the time of three months after the realization of the tattoo.

Remember that the resonator is a large magnet and tattoos have pigments which may contain metal and could heat up and cause burns.

We kept the patient with a temporary splint until we had the MRI information, as explained in previous posts; WE MUST NOT TREAT A PATIENT WITHOUT  A DEFINED DIAGNOSIS.

We could easily assume that as the patient had a systemic nonspecific inflammatory arthritis attacking various joints of her body also the TMJ could be involved.

It is fundamental to rethink something which SOMETIMES could be ONLY A CONJECTURE, even if the patient is a carrier of an inflammatory autoimmune disease.

In the systemic part it is the rheumatologist who will decide the therapy.

Our part is to promote a non-compressive position of the TMJ where the masticatory muscles may perform without loading the joint, and where the patient can fulfill all the functions of the stomatognathic system.

9APatient’s inflamed elbow after synovectomy with the disease still not controlled

9A  MRI: sagittal sections selected. Left TMJ closed mouth: articular disc anteriorly displaced. Change in the growth axis of the mandibular condyle.

Left TMJ open mouth: limitation in mouth opening.

The images here are in T1, all images analyzed including T2 and STIR DOES NOT SHOW inflammatory signs.

It is relevant to remember that in the first consultation, during the anamnesis the patient reported that she had initiated a treatment for the bruxism problem, and that at one point with the device change she began to feel a very strong pain and the mouth locked.

The patient remembers that the device change aimed to align the median line of the upper incisors to the median line of the lower incisors.

This has to be a warning to all of us in dentistry which were taught to carry out all our treatments without knowing the condition of the TMJ.  

9B  MRI: sagittal sections selected. Right TMJ closed mouth: articular disc anteriorly displaced. Change in the growth axis of the mandibular condyle.

Right TMJ open mouth: limitation in mouth opening.

After conducting the analysis of the MRI images, studying all the slices and all required parameters (not included in the post), we can proceed to carry out a neurophysiologic record.
10The masticatory muscles of the patient were electronically deprogrammed and the rest position was recorded with a computerized kinesiograph.

This record has been difficult to achieve. The patient was limited and in great pain. A very low DIO was made, leaving an interocclusal free space of one mm which would normally be too little.

11DIO (intraoral device constructed in neurophysiologic position)11A  Patient’s frontal image on the same day, before and after installing the intraoral device in neurophysiologic position.

11B  Patient’s lateral image on the same Day, before and after installing the intraoral device in neurophysiologic position.

11cPatient’s electromyography record in neurophysiologic occlusion wearing the device (DIO), even the muscles activation is low the difference with the initial record is remarkable.11DComparative EMG records: the upper in habitual occlusion and lower in neurophysiological occlusion with the DIO (intraoral device).12 abre e fecha com DIO  Patient’s kinesiographic record with the DIO (intraoral device) constructed in neurophysiological position.Improvement in mouth opening. 13 recalibração  DIO recalibration to improve the patient’s neurophysiological position. The condition of the patient now allows best records because the significant decrease in pain.14Control of the intraoral device, habitual and neuromuscular trajectory are coincident.15 REGISTROS DE AB COMPARATIVOSPatient’s comparative kinesiographic records before and during treatment. Improvement of the patient mandibular opening.16 abre e fecha inicNote on the skull graphic, both condyles right and left move symmetrically.16 A abre e fecha inicImage enlargement showing both condyles right and left moving symmetrically. Patient in maximum mouth opening.17 comparativosPatient’s kinesiographic records comparison with the skull 3D model before and after treatment.

17B comparativosSkull models in 3 D, graphic animation from patient’s kinesiographic record before and after treatment comparison. Patient in maximum mouth opening.

17A 2008MRI: Right TMJ, closed and open mouth before and after treatment. Articular disc in habitual position,(the disc was dislocated before treatment) Resolution of the opening limitation.

17B 2008MRI: Leftt TMJ, closed and open mouth before and after treatment. Articular disc in habitual position. Resolution of the opening limitation.

18 comparativasMRI: TMJ sagittal comparative images, open and closed mouth before and after treatment.

19 bThe patient without pain, decided to continue with the DIO and not perform the phase 2 to eliminate de DIO, with a tridimensional orthodontics. She decided only to restore the teeth that were worn. Restorations made by Dr. Luis Daniel Yavich Mattos.

20

When I was 39 years old I was diagnosed by my rheumatologist with arthritis.

All major joints of my left side were suddenly and without warning, very swollen, such as knee and elbow, preventing me from performing my simplier movements such as standing and stretching my arm.

I had swelling, redness and intense pain. Then I started to feel pain in the TMJ. I ended up in the clinic of an orthodontist and facial orthopedist  who told me that I had ‘bruxism’ and that I needed to use a device to place the tongue in the right position.

I wore the appliance for a month or two, my TMJ locked, I could not open my mouth and I felt an absurd pain in my entire head, I no longer knew what hurted more, if it were the joints of the body or my head and mouth.

My rheumatologist, apprehensive that I could have arthritis also in the TMJ immediately referred me to Dr. Lidia Yavich, who received me in the office and managed to relieve my pain completely .

I HAVE TO STRESS THAT, THERE WAS NO MEDICATION THAT COULD CEASE THE PAIN that I felt in the TMJ and in the cervical spine, NOTHING!

After the imaging studies performed by indication of Dr. Lidia, we came to the conclusion that I was not suffering from arthritis in both TMJ, but from a dislocation  of my right condyle  after using for a short time a mistaken device to place my bite and tongue in the ” RIGHT POSITION”

That treatment did not considered important assumptions as the asymmetry of my condyles, or their position, or the disc status in relation to the condyles, causing much suffering.

It took me a long time to understand what was happening to me in my TMJ; I suffered from absurd pain in the head in the middle of a very difficult treatment for arthritis. I was disfigured, terrified and unsure after using the first device with the previous professional because he did not know how to end the pain and even seemed, not to know what was actually happening with me.

I had panic to imagine that I had arthritis in my TMJ, but only after the MRI and the Dr. Lidia interpretation it was possible to exclude the possibility of rheumatic disease in the TMJ in that moment, and from then on to make an efficient treatment.

In a few weeks Dr. Lidia not only took out ALL THE PAIN of the TMJ, but also led me to a treatment that repositioned my disc and  stopped the pain, even being a carrier of a severe autoimmune disease.

I have been using the DIO for seven years without any pain, I have full understanding of the meaning of bruxism in my case and correct approach to the problem, including the options that I could have for a more permanent solution instead the use of the DIO.

I am very grateful to my rheumatologist  today for indicating me a treatment that saved me, because I certainly would have gone crazy with those TMJ pains.

I am very grateful to Dr. Lidia who took me from the rock bottom in which I found myself, ignorant from all  that was happening in a joint so unknown from most of us:.the TMJ.

Cervical Dystonia or Spasmodic Torticollis: Positive evolution after Neurophysiological Treatment

The patient of this post contacted me through a derivation from a colleague from abroad.

Soon after he sent an email where he explained the motif for his consultation on Cervical Dystonia or Spasmodic Torticollis, I answered that it was not my

knowledge  area, that I treated TMJ Pathologies , Orthodontics and Facial Orthopedics.

The patient insisted, commenting that the colleague that recommended me and knew me from the AACP meeting where I was invited as a lecturer explained to him that he didn´t know if I treated Distonia, but he thought that considering  what he had  watched  I could help him.

I began to study more on  published articles of this field. One of the articles that impacted me was: Spasmodic Torticollis: The Dental Connection. Anthony b. Sims, D.D.S.; Brendan C> Stack, D>D>S> ;MS.;Gary Demererjian, D.D.S.

1

Dystonia is a  neurological movement disorder, which sustained muscle contractions causing twisting and repetitive movements or abnormal postures. The movements may resemble a tremor. Dystonia is often initiated or worsened by voluntary movements, and symptoms may “overflow” into adjacent muscles.There are multiple types of dystonia, and numerous diseases and conditions may cause dystonia.

Focal   dystonia:  affects a muscle or group of muscles in a specific part of the body causing involuntary muscular contractions and abnormal postures, like eyes, neck or hands.The precise cause of primary dystonia is unknown .It is suspected to be caused by a pathology of the central nervous system, likely originating in those parts of the brain concerned with motor function, such as the basal ganglia.

2

Main common dystonia denomination are :

blepharospasm (from Greek: blepharon, eyelid, and spasm, an uncontrolled muscle contraction), is any abnormal contraction or twitch of the eyelid.

Oromandibular dystonia is a form of focal dystonia affecting the mouth, jaw and tongue, and in this disease it is hard to speak.

Cervical dystonia (spasmodic torticollis ) affects the muscles of the neck. Causes the head to rotate to one side, to pull down towards the chest, or back, or a combination of these postures.

Spasmodic dysphonia (or laryngeal dystonia) is a voice disorder characterized by involuntary movements or spasms of one or more muscles of the larynx(vocal folds or voice box) during speech.

2

Patient Testimony

Everything began approximately after the placement of the  lower implants.

One year after that, I began to feel uncomfortable.

I felt a back and neck stiffness, a strong weight in the back of the head and pain.

I began to make a lot of examination tests with neurologists, physical therapists, rheumatologists, orthopedists.
All of them followed the same line, saying that it could be a stress problem and fatigue.

Later I began to feel a twist movement in my neck towards the left. It was not so strong  but I felt I had no  control on my neck.

My neck always tried to rotate to the left, especially  when I walked and when I tried to hold an object.

After doing physical therapy, chiropractic’s, acupuncture and all those techniques I began to research and finally consulted another neurologist who told me that  I had CERVICAL DYSTONIA.

He asked for many exams to eliminate the possibility of being  a trauma or other problem related to Wilson disease. That hypothesis was soon discarded.

I consulted another neurologist that confirmed the same diagnosis: CERVICAL DYSTONIA.

The neurologist initiated a treatment with Botox, to alleviate, and to relax some muscles, trapeziums, sternocleidomastoids and splenius. I was also oriented to have three applications of miorelaxants.

I began to investigate more on the subject and I found some videos about TMJ and some treatments with dental appliances.

4

Habitual patient’s occlusion

Patient Testimony

The situation is very bad because doctors say: “is neurological”,  we don’t know the etiology and it has no cure until today.

I believe all of this must have a relation with the implants, because I passed more than 30 years without these teeth, maybe  the position of my mouth could have provoked some slow alteration that end up in this situation.

I’m not an specialist to affirm that this is the real situation, but I believe that it is worthy to investigate because there is the existence of written articles.

Moreover Dr. Anthony Sims, and other doctors in the dentistry field point for possible head and neck disturbance, motor coordination, Tourette disease or something like that, so many things connected with TMJ (temporomandibular joints) disorders.

3

Patient’s occlusal superior and inferior view

1

Patient report: Detail of principal symptoms

Impossibility of head stabilization

Ringing ears

Ear compression sensation

Muscle spasm when I want to move the head down and to the right.

Noises in the vertebras in the back of the neck region, may be C1 and C2, but I am not sure and noises in the spine.

Noises in the TMJ, specially when yawn.

5

Patient’s panoramic radiograph before treatment.

6

Patient’s frontal radiograph where it is clearly seen the impossibility for straight posture of the head.

7

Patient’s initial laminography, in habitual occlusion where we can observe the retro position of both mandibular heads.

9

Patient’s initial lateral radiograph in habitual occlusion before treatment.

10

We can observe in this lateral radiograph and cervical spine radiograph the total lack of space between the ATLAS posterior arc and the Occipital base. I suspected adherences so I solicited a lateral radiograph in flexion.

11

In the Cervical Spine radiograph in flexion we can observe a REDUCED space between the ATLAS posterior arc and the base of the occipital. THE SPACE IS REDUCED, BUT EXISTS.

12

The MRI in closed mouth shows a small disc, superior facets in both mandibular condyles and bilateral retro discal compression. The patient has no limitation in opening the mouth and the discs are well situated on the mandibular heads when opening. I didn´t judge important to include the image of open mouth for this clinic case.

tHE 13

The Semg dynamic record shows an important asymmetry between anterior right and left temporalis, low activity of both masseters muscles. The trapezius doesn’t show activity during mandibular closing, which is physiologically correct. Important activity from the digastrics muscles in closing movement, which is not physiologically correct.

14

The Semg dynamic record shows an important asymmetry between anterior right and left temporalis, low activity of both masseters muscles. The sternocleidomastoid muscles show activity during mandibular closing, which is NOT physiologically correct (the sternocleidomastoid muscle is not a masticatory muscle). Important activity from the digastrics muscles in closing movement, which is NOT physiologically correct.

15

His masticatory muscles were electronically deprogrammed with TENS (Transcutaneal Electronic Neural Stimula­tion). A jaw tracker then registered a neurophysiologic position from where an intraoral appliance was constructed and tested with SEMG (Surface Electromyography.) For this record we used the neurophysiologic technique.

16-comparativa-frontal-1-dio

Patient’s frontal comparative images: initial and four months after DIO (Intra Oral Device) wear. Notice the important improvement of head and shoulder posture.

17-a-comparativa-perfil-diio

Patient’s right profile comparative images: initial and four months after DIO (Intra Oral Device) wear. Notice the important improvement of head and shoulder posture.

17-b-comparativa-perfil-2-diio

Patient’s left profile comparative images: initial and four months after DIO (Intra Oral Device) wear. Notice the important improvement of head and shoulder posture.

19

Patient’s lateral radiograph with the device in neurophysiological position. Notice the space between the posterior arc of the atlas and the occipital base that didn´t exist before.

20

Patient’s frontal comparative radiograph: before the treatment and with the DIO (Intra Oral Device), the patient manages now to have a straight posture of the head.

21

Patient’s lateral and cervical spine comparative radiograph: before the treatment and with the DIO. Notice the space between the posterior arc of the Atlas and the occipital base that did not exist before.

22

Patient’s comparative laminographies: initial in habitual occlusion where we can observe the retro position of the mandibular heads and with the intraoral device with retrodiscal decompression.

23-comparativa-frontal-3-dio

Patient’s frontal comparative images: initial, four months and nine months after DIO wear. The patient had a physiological posture recovery.

24-comparativa-perfil-3-diio

Patient’s right profile comparative images: initial, four months and nine months after DIO wear. The patient had a physiological posture recovery.

25-comparativa-perfil-2-diio-3

Patient’s left profile comparative images: initial, four months and nine months after DIO wear. The patient had a physiological posture recovery.

artigo

Spasmodic Torticollis: The Dental Connection. Anthony b. Sims, D.D.S.; Brendan C> Stack, D>D>S> ;MS.;Gary Demererjian, D.D.S.

 

26

 

The patient also sent videos where he shows his initial incapacity to rotate the head and also comparative videos where he could do that again. The videos are not in the post to preserve patient’s identity.