Treatment of TMJ Pathologies: Patient with headache and excessive clenching. Physiological Neuromuscular Rehabilitation. First and second phase. Case Report.

1 frontal inicial rosto

A 32-year-old male patient presents at the clinic with complaints of constant headaches, pain in the jaw and daily pressure on the teeth.
The patient also reports pain in the temporomandibular joints and pain to open the mouth.

2 lateral inicial rosto

The patient also reports bilateral clicks and the sensation of clogged ears.
It also states in its clinical history difficulty in chewing and opening the mouth and inability to control teeth tightening.
The patient reported that he sought various dentists and treatments and that he had previously used “miorelaxant” splints that did not alleviate the referred symptoms.

3 OCLUSÃO 1

Habitual occlusion of the patient on the day of the consultation.
The patient had a deep bite and significant wear on the upper and lower incisors.

4 OCLUSAIS

Upper and lower occlusal views of the patient prior to treatment. Wear on lower and upper incisors.

5 PANORAMICA INICIALInitial panoramic radiograph of the patient before treatment.

Absence of teeth 18, 28, 38, 48.

Horizontal resorption of alveolar ridges.

6 P6 INICIAL

Patient TMJ laminography in habitual occlusion before treatment.

The laminography of the temporomandibular joint shows retroposition of the articular processes in the articular cavities when the mandible is in position of maximum intercuspation
In the mandibular aperture, the presence of osteophytes was observed in both condyles.Flattening of the superior anterior surface of the articular processes and superior posterior of the right articular process.

7 TELE PERFIL INICIAL

Lateral radiograph and patient profile in habitual occlusion before treatment. Rectification of the cervical spine.

8 C7 INICIAL

Lateral and cervical radiograph of the patient in habitual occlusion before treatment. Rectification of the cervical spine.

9 FRONTAL INICIAL

Frontal radiography of the patient in habitual occlusion before treatment.

10 ress1

MRI: sagittal slices of the left closed TMJ before treatment. The mandibular head is in retro position. The joint disc is slightly dislocated.
The articular disc has a reduction in open-mouth maneuvers. Open mouth images not included in this post.

11 ress3

MRI: sagittal slices of the left closed TMJ before treatment. The mandibular head is in retro position. The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.
Open mouth images not included in this post.

12 b ress

MRI: sagittal slices of the right closed TMJ before treatment. The mandibular head is in retro position. The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.
Open mouth images not included in this post.

13 ress4

MRI: sagittal slices of the right closed TMJ before treatment. The mandibular head is in retro position. The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.
Open mouth images not included in this post.

13 cineciog 1

Patient’s initial cineciographic record
Three-dimensional view of the mandibular movement.
The record shows opening and closing and speed when making these moves. The patient shows an opening of more than 50 mm
Note a significant loss of speed in the mandibular closure.

13 eletromiografia inicial

Dynamic electromyographic record in patient’s habitual occlusion before treatment.

Note very little activation of the right and left masseter muscles in maximal intercuspation, indicating to the patient to bite hard without opening his mouth.

The masseter muscles are the most powerful muscles of the stomatognathic system, even more considering a  brachyfacial biotype patient as in this case.

13 REGISTRO

To correctly evaluate the Maxilomandibular relationship we should begin to consider the physiological rest mandible position.

Physiological rest is a concept applicable to all the muscles of the body.

The stomatognathic musculature is no exception.

The patient’s masticatory muscles were deprogrammed electronically and a new physiological neuromuscular position at rest was recorded.

The patient has a pathological free space of 8,2 mm, already discounting the two physiological mm of a healthy free space.

The patient also presented a 2 mm mandibular retro position

13C PRIMEIRA ORTESE LUIS

With these data we constructed a DIO (intraoral device), to maintain the three-dimensional recorded position. This device must be electromyographically tested to objectively measure the patient.

It is logical that the report of the patient’s symptomatology is important, but the surface electromyography shows in an objective way if the muscular function improved, worsened or did not modify.

13A FRONTAL DIO

Frontal radiography of the patient with the DIO (intraoral device) constructed in a physiological neuromuscular position.

13B LATERAL COM DIO

Lateral and cervical radiograph of the patient with the DIO (intraoral device) constructed in a physiological neuromuscular position.

The second MRI is requested after one year on average of the first phase treatment, also during the second phase of the treatment, the patient is monitored, and the device recalibrated or changed according to the controlled data throughout this step.

14 ress comp 1

MRI: comparative sagittal sections of the left TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc.

15 ress comp 2

MRI: comparative sagittal sections of the left TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

16 ress comp 3

MRI: comparative sagittal sections of the left TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

17 ress comp DIR

MRI: comparative sagittal sections of the right TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

18 ress comp DIR

MRI: comparative sagittal sections of the right TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

19 ress comp DIR

MRI: comparative sagittal sections of the right TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

20 PRIMEIRA ORTESE DA 2 FASE

The patient did not report any more symptomatology related to the TMJ. Bioinstrumentation also objectively showed an improvement in neuromuscular function.

We decided to start the SECOND PHASE of the treatment to remove the DIO (intraoral device), maintaining the physiological neuromuscular occlusion.

For this we used a three-dimensional orthodontics, where the teeth are erupted to the new neurophysiological position.

21 ORTO 1

In the second phase, in this case the three-dimensional orthodontics,the patient is monitored and deprogrammed electronically, and often the device is recalibrated or changed, to maintain the position obtained in the first phase.

Part of the sequence of the second phase (in this specific clinical case).

22 ORTO 2

Part of the sequence of the second phase (in this specific clinical case).

23 ORTO 3

Part of the sequence of the second phase (in this specific clinical case).

24 ORTO 4

Part of the sequence of the second phase (in this specific clinical case).

25 ORTO 5

Part of the sequence of the second phase (in this specific clinical case).

26 orto 6

Part of the sequence of the second phase (in this specific clinical case).

27 orto 7

Part of the sequence of the second phase (in this specific clinical case).

28 ORTO 8

Finalization of the second phase.

29 OCLUSAIS FINAIS

Patient’s upper and lower occlusal view after the finalization of the second phase.

43 oclusoes comparativas

Comparative occlusion of the patient before and after the end of the second phase of the treatment using a three-dimensional orthodontics.

The non-coincidence of the median dental lines may be noted.
The patient’s fundamental alignment is muscle alignment that does not always coincide with tooth alignment. In this case the muscular alignment is respected.

44 oclusoes comparativas

Patient’s comparative superior and inferior occlusal view, before and after, the end of the second phase of the treatment by a three-dimensional orthodontics.

eletromiografia final

Electromyographic record of the patient in physiological neuromuscular position after the completion of three-dimensional orthodontics.

Note the higher recruitment of motor units in the masseter muscles that previously showed little activity.

30 FRONTAL FINAL

Frontal radiography of the patient after the end of the second phase of the treatment.
Patient in physiological neuromuscular occlusion.

31 TELEPERFIL FINAL

Lateral radiograph and patient profile after completion of the second phase of treatment.
Patient in physiological neuromuscular occlusion.

32 C7 FINAL

Lateral and cervical radiography of the patient after the end of the second phase of the treatment.
Patient in physiological neuromuscular occlusion.

33 PANORAMICA FINAL

Panoramic radiograph of the patient after the end of the second phase of the treatment with three-dimensional orthodontics.

34 LAMINOGRAFIA FINAL

Patient TMJ laminography after the completion of three-dimensional orthodontics.
Patient in physiological neuromuscular occlusion.

35 comparativas panoramicas

Comparative panoramic radiographs of the patient: before treatment and after finishing with three-dimensional orthodontics.

36 comparativas laminografias

Patient comparative TMJ laminography: before treatment and after completion with three-dimensional orthodontics.

40 COMPARAÇÃO TELE PERFIL

Comparative lateral and profile radiographs of the patient: before treatment and after finishing with three-dimensional orthodontics.

Take into account that the result corresponds more to a three-dimensional recovery of the vertical dimension and not simply to an anteroposterior modification.
Even a retroposition of the mandibular head is the product of a three-dimensional alteration.

41 COMPARAÇÃO FRONTAIS

Comparative frontal radiographs of the patient: before treatment and after finishing with three-dimensional orthodontics.

42 C7 COMPARATIVAS

Comparative patient lateral and cervical radiographs: before treatment and after completion with three-dimensional orthodontics.

46 DEPOIMENTO 1

At the end of 2012, I attended the Life and Health program on RBS TV and saw a report with Dr. Luis Daniel Yavich Mattos, on the treatment of problems related to TMJ.

Living with constant headaches, jaw pain and daily pressure on the teeth,

I decided to bet on the treatment and I do not regret it.

Since I was 18 years old, I had been suffering from pain in the TMJ region, and what

bothered me was a pressure that made me want to grind my teeth even

day, which I have always identified as bruxism.

I had already sought out various dentists and treatments, with the use of the famous splints to sleep. The diagnosis was always the same: emotional stress was the cause of my teeth and constant pains, although the pains started only after I have extracted my first wisdom.

47 DEPOIMENTO 2

I used to use the plates to sleep during the 24 hours of the day, so the will of biting and grinding teeth. The use of the splints  prevented wear, but the pressure I felt to bite and grind my teeth caused me TMJ fatigue and headaches.

And when I had no more hope emerged, the possibility of doing the treatment with Dr. Luis Daniel and Dr. Lidia Yavich, when I was 32 years old.

With Dr. Luis Daniel they were approximately 1 year and 2 months  using a very high plate, 24 hours a day, including to make meals, which I only took to do the oral hygiene.

The device was called the “big monster,” because of the height. In the end, no longer  pain and without the will of grinding and biting my teeth.

I went on to the second stage of treatment, now with Dr. Lidia Yavich.

48 DEPOIMENTO 3

With Dr. Lidia were approximately 3 years, in which I used fixed dental appliance, with brackets, steel wires, etc., in order to be able to stop using the board 24 hours a day, and improve the aesthetics of my dental arch.

As the treatment progressed, the device was diminished and new splints were used in order of erupting my teeth respecting the TMJ position.

At the end of the treatment, I now use one sleeping device and another one for aesthetic reasons.

I no longer have the willingness to bite and grind teeth, or pain in the TMJ or headaches. I can yawn without worrying about hurting my jaw.

Finally, it was an individualized, artisanal treatment that required time and dedication, and brought excellent results, which is why I am eternally grateful to Dr. Luis Daniel and to Dr. Lidia.

 

Child with Otalgia (earache) and Conductive Hearing Loss: when measuring makes the difference. Normalization of hearing thresholds. First and second phase. Case report.

Symptoms of mild hearing loss occurring in childhood often go unnoticed. It is vital the early detection of this deficiency.

Various physical and psychological activities of children and adolescents may be affected due to hearing impairment.

The conductive hearing loss resulting from Eustachian tube dysfunction INITIATED BY  TEMPOROMANDIBULAR DISORDERS  is OFTEN NOT CONSIDERED.

It is vital the early detection of this deficiency.

There are two general types of hearing loss, conductive and sensorineural.

Conductive hearing loss results from disruption in the passage of sound from the external ear to the oval window.

Anatomically, this pathway includes the ear canal, tympanic membrane, and ossicles. Such loss may be due to cerumen impaction, tympanic membrane perforation, otitis media, osteosclerosis , intraaural muscle dysfunction, or displacement of the ossicles by the malleolar ligament.

Sensorineural hearing loss results from otology abnormalities beyond the oval window. Such abnormalities may affect the sensory cells of the cochlea or the neural fibers of the 8th cranial nerve. Hearing loss with age (presbycusis) is an example. Eight cranial nerve tumors may also lead to such hearing loss.

1

Male patient, eleven years old,  arrived to the clinic for consultation referring headache, pain on the  back of the head, shoulder pain, neck pain, hand numbness and tingling  in hands and LIMITATION OF MOUTH OPENING.

1A

The patient reports pain in the left ear and sensation of ear blockage especially on the left side. He also has tinnitus in both ears and DECREASE OF HEARING IN BOTH EARS.

Any hearing loss reported by the patient, must be evidenced by an audiometry.

2

Patient’s medical history: is relevant to this case the antecedent trauma on the chin at early childhood. It is also important to consider his recurrent infections of  ear and throat and that when he was eight months old he had a severe pneumonia that required hospitalization.

3

Images of the patient’s habitual occlusion. Upper and lower oclusal view. Patient’s photos:  frontal, profile and smiling on the day of consultation.

4

Patient’s initial panoramic radiograph

5

Patient temporomandibular joint laminography before treatment: we can observe the superior and posterior position of the left condylar process in the articular cavity when the jaw is in the position of  maximum intercuspidation.

In the maximum opening position, we can observe the anterior angulation of the left articular processes.

6

Patient’s habitual image occlusion before treatment, in the consultation day.We may observe here an important overbite.

It is evident the lack of space for the correct positioning of the  left maxillary canine.

7

Superior and lower oclusal view of the patient before treatment. It is evident the lack of space for the correct positioning of the left maxillary canine.

8

Patient’s lateral radiograph together with the profile image before treatment.

Retrognathic profile and rectification of the cervical spine.

9 res fechada

MRI T1: Sagittal slice, left and right TMJ closed mouth before treatment.

We can observe anterior facets on the right and left mandibular heads.

In the right TMJ the disk is slightly anteriorly dislocated. The anterior dislocation is more evident on the left TMJ, with the head of the mandible backed on the retrodiscal  zone.

10 res aberta

MRI T1: Sagittal slice, left and right TMJ open mouth before treatment.

We can observe anterior facets on both mandibular heads.

Both mandibular condyles cannot translate, reducing mouth opening.

12 cineciog 1

Initial kinesiographic record: loss of speed when the patient opens and closes his mouth. There is no coincidence between the opening and closing trajectories in the sagittal view of the record. Limited mouth opening as the patient can open only 32.9 mm.

11 ELET INICIAL

Surface electromyography of the patient in habitual occlusion in which are measured:

Anterior right and left temporalis

Right and left masseter

Right and left digastrics

Right and left superior trapezius

Activation of the digastrics in closure, these muscles should only must be in activity along the opening movement

During the examination there was an activation of the right and left upper trapezius even when the patient was instructed to lower his shoulders.He had activated both trapezius throughout the examination.

13

The patient reports pain in the left ear and sensation of ear blockage, especially on the left side. He also has tinnitus and DECREASE OF HEARING IN BOTH EARS.

ANY HEARING LOSS REPORTED BY THE PATIENT MUST BE EVIDENCED BY AN AUDIOMETRY.

15 AUDIOMETRIA INICIAL

An audiogram is produced by using a relative measure of the patient hearing as compared with an established “normal “value. It is a graphic representation of auditory threshold responses that are obtained from testing a patient’s hearing with pure-tone stimuli. The parameters of the audiogram are frequency, as measured in cycles per second (HZ) and intensity, as measured in dB­­­­.

The first audiometry of the patient revealed a mild hearing loss in the left ear and a moderate hearing loss in his right ear.

Symptoms of mild hearing loss occurring in childhood often go unnoticed. It is vital the early detection of this deficiency.

Hearing loss is classified as mild, in which the ear is unable to detect sounds below 40 decibels which makes it  difficult to understand human speech.

In moderate loss, the sounds below 70 decibels are not heard.

17

We recorded the mandibular rest position after electronic deprogramming, together with the information of the MRI (magnetic resonance imaging) to orient our decisions of the bite registration, for the three-dimensional construction of the DIO (intraoral device).

The patient has a pathological free space of 8.6 mm and 8 mm of mandibular retro position.

The degree of compression determinates de reaction of the patient.

The retrusion of the mandible, whether it is iatrogenically induced, or a result of malocclusion, often results in otalgia due to excessive compression of the neurovascular retrodiscal tissues. The patient’s impression is ear pain.

18

I informed the parents of the patient, that at this stage, I was only worried about the health of the patient, and focused on  improving the functions, the symptoms and controlling the conductive hearing loss.

Hearing loss resulting from Eustachian tube dysfunction, initiated by craniomandibular disorders is usually subjective.

For this reason there is a need for an objective control by audiometry.

 I explained that I would not make any orthodontic intervention at this stage to include in the arcade the canine that was misaligned and out of space. I told them  that I would take care of it later and in this case I would not have the need to extract teeth.

19

The installed device is controlled through surface electromyography to evaluate the function.

20 AUDIOMETRIA 2

Patient’s second audiometry  shows normal thresholds in the left ear and a mild hearing loss in his right ear.

21 AUDIOMETRIA 1 e  2

Comparing the first and second audiometry of the patient during treatment.

Thresholds normalization of the right ear and thresholds improvement of the left ear.

23

Structural lesions may produce functional changes which in turn increases the structural changes.

24

Structural and functional changes.

25

Even a decompressed joint, takes time to recover

Some structural lesions can be recovered, but  OTHERS CANNOT.

25A

Even a decompressed joint, takes time to recover

Some structural lesions can be recovered, but OTHERS CANNOT.

26

It takes time to stabilize the muscles during treatment, different patients, different ages and different pathologies.

27 AUDIOMETRIA 3

Patient’s third audiometry shows NORMAL thresholds in the left ear and NORMAL thresholds in his right ear.

28 AUDIOMETRIA 1 e  2 e 3

Comparing the first, second and third audiometry of the patient during treatment.
Thresholds normalization in the right and left ear.

At this time with the normalization of the conductive hearing loss, the remission of symptoms and improvement of the images from the exams, we began the second phase through a three-dimensional orthodontics.

29 SERIES DE ORTO 1

Sequence of the three-dimensional orthodontic in the second stage of treatment of TMJ disorders in this particular patient. REMEMBER THAT NOT EVERY CASE WILL ALLOW THE IMPLEMENTATION OF A SECOND STAGE.

30 SERIES DE ORTO 2

Sequence of the three-dimensional orthodontic in the second stage of treatment of TMJ disorders in this particular patient. REMEMBER THAT NOT EVERY CASE WILL ALLOW THE IMPLEMENTATION OF A SECOND STAGE.

30 A PERFIL E RAD LATERAL ORTO

Patient’s lateral radiograph together with the profile image during treatment.

Aesthetic and not retrognathic profile as at the beginning of treatment.

There was not a recovery of the physiological lordosis, but there surely was an improvement of the cervical spine.

31 SERIES DE ORTO 3

Sequence of the three-dimensional orthodontic in the second stage of treatment of TMJ disorders in this particular patient. REMEMBER THAT NOT EVERY CASE WILL ALLOW THE IMPLEMENTATION OF A SECOND STAGE.

32  SERIES DE ORTO4

Sequence of the three-dimensional orthodontic in the second stage of treatment of TMJ disorders in this particular patient. REMEMBER THAT NOT EVERY CASE WILL ALLOW THE IMPLEMENTATION OF A SECOND STAGE.

33 RETIRADA DO DIO

Removal of the DIO (intra oral device) at the current stage of the three-dimensional orthodontics.

34 SERIES DE ORTO4

Images without the DIO (intraoral device) and completion of the treatment of the three-dimensional orthodontic in neurophysiological occlusion.

OCLUSAIS FINAIS

Comparative images of the upper and lower oclusal views from the patient before and after completion of the first and the second phase of the neurophysiologic treatment.

35 AUDIOMETRIA 4

The fourth audiometry of the patient after completion of the two phases of treatment maintains the normal thresholds in both the left ear and the right ear.

SERIES DE ORTO

Part of the sequence of the three-dimensional orthodontics in the second stage of the treatment of TMJ disorders in this particular patient.

panoramicas comparativas

Comparative panoramic radiographs: before treatment and after completion of the three-dimensional orthodontics.

CEF COMPARATIVOS

Comparative of lateral radiographs of the patient: at the beginning of the treatment in habitual occlusion, after the  completion of the three-dimensional orthodontic in neurophysiological occlusion and six years after the completion of treatment control.

37 CINESIO comparativoS

Patient’s kinesiographic records comparison: before and after treatment.

The mouth opening  of the patient improved from 32.9 mm to 38.9 mm and it also reached an excellent speed regarding  mouth opening and closing.

37 eletro comparativo

Patient’s electromyography records comparison: before, during and after treatment.

39 jaw trackwe  comparativoa

Patient’s kinesiographic records after electronically mandibular deprogramming comparison: before treatment the habitual trajectory is not coincident with the neuromuscular trajectory.

After treatment the habitual trajectory is tridimensional coincident with the neuromuscular trajectory.

40 todas as audiometrias

Comparing the first, second, third and forth  audiometry of the patient.
Thresholds normalization of right and left ear.

FINALE FINALE

Various physical and psychological activities of children and adolescents may be affected due to hearing impairment. The conductive hearing loss resulting from Eustachian tube dysfunction INITIATED BY  TEMPOROMANDIBULAR DISORDERS  is OFTEN NOT CONSIDERED.

It is vital the early detection of this deficiency.

42 DEPOIMENTO 1

When the patient ended all the treatment, and being still a teenager, he left the following testament:

My dentist referred me to the orthodontist because I had a crooked canine. So, after a panoramic radiograph she suspected that I could have a TMJ problem. Then she referred me to Porto Alegre to do a MRI, and from that exam it was found something that indicated a TMJ problem. So then I started the tratment with Dr. Lidia Yavich, that also investigated the tinnitus and my hearing problem.

When I was little I felt and hit the chin but my parents didn’t know that it could affect my TMJ.

I suffered a lot from an earache and sore throat. I had even scheduled an ear surgery but after six months of treatment it was no longer necessary to do it. Today I am doing well. I have a good hearing and I don’t have any more the tinnitus and the throat pain. I am happy with this treatment, thanks to God and to Dra. Lidia Yavich.

42 DEPOIMENTO

Here follows the testimony of the same patient seven years after the completion of the treatment:

Today, more than seven years after the end of the TMJ treatment with Dr. Lidia, and thanks to the God-given gifts to her, I haven’t been suffering any more with the earaches nor with the throat pain or the hearing loss. I had had, before the treatment, the indication to make an ear operation since I was loosing my hearing and that was not necessary with the TMJ treatment because during the treatment I was monitorated by exams that had proven that my hearing improved. Today I live a normal life, without having problems with those things from the past. I thanks the treatment done by Dr. Lidia which has healed me and improved my life.