Posteriorization of the Mandibular Condyle, Compression of the Retrodiscal Tissue and Anteriorization of the Articular Disc as a cause of Neurologic Pain. Recovery of the Physiological Relationship of the Head of the Mandible with the Articular Disc. Series of clinical cases.

In this page we present some of the physiological neuromuscular foundations for the treatment of temporomandibular joint pathologies, it was also presented the importance of differential diagnosis and also the use of bioinstrumentation as surface electromyography and computerized kinesiography.

Images of patients related to their symptoms were also presented. Several etiological factors such as trauma in early childhood, especially green stick fracture, recapture of the intra-articular discs in reducible displacements, and interrelation between craniomandibular disorders and the vertebral column.

When we talk about the treatment of TMJ pathologies we have to understand that there are different approaches. The proposal for a palliative treatment is the symptomatic treatment, that is, a treatment that seeks to block the symptoms. It is given through the administration of drugs, such as analgesics, anti-inflammatory and myo relaxing drugs. The restorative approach is the treatment that seeks when possible to correct or heal what is damaged. To know what is wrong, a differential diagnosis is necessary. This diagnosis must always be made prior to the treatment proposal.

1 FOTO INIC FRONTALA 19-year-old female patient presents at the clinic with complaints of constant headache, neck pain and swelling in the face, back of the head pain and migraines.

According to the anamnesis filled out by the patient herself, in the initial consultation she reports clicks in the jaw, dizziness, ear pain and low back pain.

The patient also reports bruxism and nighttime clenching.

2 FOTO INICIAL PERFILThe patient also refers to retro-ocular pain on the right side, pain in both shoulders, and pain in the TMJ (right temporomandibular joint).

The patient reports cracks in the TMJ on the right side, sensation of ear covering, strange sounds and non-specific facial pain.

The patient claims difficulty in opening the mouth and difficulty in chewing.

Summary report written by the patient

In the middle of the year 2014, I had a routine consultation at a dentist to clean my teeth and I reported cracking and pain in the jaw, she did not pay attention, she said it was normal and it would soon pass.

Since then I started with severe headaches, dizziness, ear pain, back pain, my feet (more in  my heel), pain in my eye as well, and in days of painful crises, my right eye would hardly open and the right side of the my face all swollen (mumps type).

After this worsening we looked for an TMJ specialist who gave me an acrylic plate, thin and only for my upper teeth.

I used the splint for six months and after that all the symptoms worsened.

We looked for another specialist, who made the same acrylic plate for the upper teeth, but in a very different size, it was a thick plate.

In the beginning it helped, after six months, all the symptoms started to appear stronger.

We consulted a new specialist, who made a new type of appliance, with the wires and the blue acrylic on the side (I took it to show to you), it was what had helped me the most, using it for 24 hours, improved pain, even dizziness , but after a year of use everything returned and with all the pain still stronger, however during that one year of treatment, despite the improvements I could not make any kind of physical effort even not strong  my jaw swelled (gym, climbing stairs, picking up weight …)

In March 2017, a year and four months of use of the appliance, the professional said it was time to start “weaning”, start leaving the device and use only to sleep because I should already be good, I commented that it had gotten worse and she insisted that it was the time to be well…

It was then that we looked for another specialist, this one said that the plate in use was not suitable for the problem and made a new plate of acrylic that judged the correct one for the presented problem, was thin and of acrylic, equal to the first one I already used, only for the upper teeth, I immediately told to my mother and to him that this plate would not solve, since I had already used identical plate in previous treatment, he insisted saying yes, that was the correct one.

With the use of the device I also did  hot compresses and shocks of physiotherapy and also needles, which helped a lot in the neck muscles that hurt a lot, but this device from the beginning did not help, the headaches that felt every day were even worse, I’ve had more dizziness.

3 DENTES INIC PROT FRONTALHabitual occlusion of the patient on the day of the consultation.

6 OCLUSAIS INIC SEM PROTUpper and lower occlusal views of the patient on the day of the consultation.

7 PANORAMICA INICIALInitial panoramic radiograph of the patient before treatment.

8 LAMINOGRAFIA INCIAL

TMJ laminography in habitual occlusion and in open mouth.

The laminography of the temporomandibular joints shows a modification of the axis of growth of the mandibular condyles caused by a trauma in the early childhood, (green stick fracture).

Important retro position of the jaw mandibular heads especially on the left side causing an important retrodiscal compression.

9 TELE PERFIL INICIALLateral radiograph of the patient in habitual occlusion before treatment.

10 C7 INICIALLateral and cervical radiograph of the patient in habitual occlusion before treatment. Note the loss of cervical lordosis, rectification of the cervical spine.

11 FRONTAL INICIALFrontal radiography of the patient in habitual occlusion before treatment.

12 eletromiog dinamica inicial

Dynamic electromyographic record of the patient in habitual occlusion.

It is important to understand that surface electromyography is an additional tool in diagnosis, and not the only determinant, is a very interesting tool to be able to control the evolution in our own patient during the course of treatment.

13 cortes sagitais da ATM ESQUERDA FECHADA ANTES DO TRAT

 MRI: sagittal T1 slices of the left TMJ closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular heads are in retroposition.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

The magnetic nuclear resonance of the patient in habitual occlusion demonstrates the anterior dislocation of both articular discs, retroposition of the mandibular heads and modification of the axis of growth caused by traumatism in the early childhood (Structural modifications of the mandibular condylar process as one of the sequels of traumatism. in infancy). Dislocation is reducible (open mouth resonance not included in this post).

14 cortes sagitais da ATM ESQUERDA FECHADA ANTES DO TRAT

 MRI: sagittal T1 slices of the left TMJ closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular heads are in retroposition.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

15 cortes sagitais da ATM DIREITA FECHADA ANTES DO TRAT

 MRI: sagittal T1 slices of the right TMJ closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular heads are in retroposition.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

16 cortes sagitais da ATM DIREITA FECHADA ANTES DO TRAT

 MRI: sagittal T1 slices of the right TMJ closed mouth before treatment. There is an anteroversion of the mandibular condyle. The mandibular heads are in retroposition.

The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.

Important retrodiscal compression.

17 RNM FRONTAIS INICIAIS DIR E ESQ-Recuperado

MRI: T1 frontal slices of right and left temporomandibular joints, closed mouth in habitual occlusion before treatment.

The frontal slice of the right and left temporomandibular joint evidences a severe loss of joint space.

20 TOMOGRAFIA

Tomographic examination of temporo-mandibular joints.

Right and left sagittal slices in habitual occlusion prior to treatment.

21 TOMOGRAFIA

Tomographic examination of temporo-mandibular joints.

Multiplanar reconstruction – left  TMJ in habitual occlusion before treatment.

Important posteriorisation of the mandible head.

22 TOMOGRAFIA

Tomographic examination of temporo-mandibular joints.

Multiplanar reconstruction – right  TMJ in habitual occlusion before treatment.

Important posteriorisation of the mandible head.

22a REGISTRO CINECIOGRAFICO INICIAL

When our proposal is a restorative treatment, we have a FIRST PHASE where the goal when possible is to heal the joint. Sometimes we can only improve it or prevent it from getting worse. Knowing what we can treat and what we cannot treat and the limitations of each individual case is very important.

To correctly evaluate the maxillomandibular relationship we should begin to consider the physiological position of mandibular rest.

Physiological rest is a concept applicable to all the muscles of the body.

The stomatognathic musculature is no exception.

The patient’s masticatory muscles were electronically deprogrammed and a new resting neuromuscular physiological position was recorded.

The patient has a pathological free space of 7.7 mm.

The patient also had a 0.6 mm mandibular retroposition.

23 oclusao DIO

Occlusion of the patient with the DIO (intraoral device)

With the record obtained with the jaw tracker an intraoral device (DIO) was made to three dimensionally reposition the mandible.

The NEUROMUSCULAR PHYSIOLOGICAL position was recorded in the form of an occlusal bite record, which was later used to make a DIO (intraoral device)

In the first phase the intraoral devices are recalibrated and / or changed according to each specific case as the jaw, muscles and TMJ improve.

24 COMPARATIVAS FRONTAIS POSTURAIS

Comparative frontal postural images.

The patient was derived along with TMJ pathology treatment for a physiotherapy team in the city where she resides. Along with mandibular repositioning the conditioning of all postural chains is necessary.

Each patient needs a specific derivation according to the particular case.

25 eletromiog dinamica com DIO

Dynamic electromyographic record of the patient with the DIO (intraoral device) in physiological neuromuscular occlusion.

26 CONTROLE DA ORTESE

28 RNM Comparativas esquerda 1 sagital

MRI: Comparison of left sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

29 RNM Comparativas esquerda 2 sagital

MRI: Comparison of left sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

30 RNM Comparativas esquerda 2 sagital

MRI: Comparison of left sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

31 RNM Comparativas esquerda 2 sagital

MRI: Comparison of left sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same left TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

32 RNM Comparativas direia 2 sagital

MRI: Comparison of right sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

33 RNM Comparativas direia 2 sagital

MRI: Comparison of right sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

34 RNM Comparativas direia 2 sagital

MRI: Comparison of right sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

35 RNM Comparativas direia 2 sagital

MRI: Comparison of right sagittal cut T1, closed mouth, before physiological neuromuscular treatment, and the same right TMJ, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

36 RNM Comparativas esquerda frontal

RNM: Comparison of FRONTAL SLICE  T1, left TMJ, closed mouth, before the physiological neuromuscular treatment, and the same left TMJ, FRONTAL SLICE T1, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

37 RNM Comparativas direita frontal

RNM: Comparison of FRONTAL SLICE  T1, right TMJ, closed mouth, before the physiological neuromuscular treatment, and the same right TMJ, FRONTAL SLICE T1, closed mouth, after the FIRST PHASE of the treatment.

Recovery of the physiological relation of the head of the mandible with the articular disc.

38 panoramicas comparativas

Comparative panoramic radiographs of the patient before starting the treatment and at the beginning of the second phase of the treatment. At this time the removal of the third molars included can also be done.

39 laminografias comparativas

Comparative laminographies of the patient before starting the treatment and at the beginning of the second phase of the treatment. The joint decompression can be observed.

Laminographs and or COMPUTERIZED TOMOGRAPHS, even showing decompression DO NOT SHOW the position of the articular disc. The position of the articular disc and the presence or not of osseous edema of the mandibular condyle can only be evaluated with nuclear magnetic resonance. The result or not of the recovery of the Physiological Relationship of the Jaw Head to the Articular Disc can be evaluated by comparing the MRI after the first phase and the comparison with the initial MRI.

40 frontais comparativas

Comparative frontal radiographs of the patient before starting the treatment and at the beginning of the second phase of the treatment.

When the first phase is completed, we verify if the subsequent control images correspond to our goals set in the initial diagnosis. We know that there are cases where we can improve the case, and others where we can prevent it from worsening, and others where we can only treat the pain.

The patient did not report any symptoms from the temporomandibular joint. The comparative MRI showed the recovery of the physiological relation of the head of the mandible with the articular disc.

The electromyographic and kinesiographic records objectively showed improvement of the neuromuscular function.

In the case of positive results from the first phase we can start a second phase of treatment to remove the device that is used permanently during the first phase of the treatment. For this we can perform a three-dimensional orthodontic, a physiological neuromuscular rehabilitation or the combination of both. Always maintaining the mandibular location in balance with the muscular planes, temporomandibular joint and dental planes.

It was decided to start the SECOND PHASE of the treatment to remove the DIO (intraoral device), maintaining the physiological neuromuscular occlusion.

In this case we will move to a three-dimensional orthodontic, where the teeth are erupted to the new physiological neuromuscular position.

A three-dimensional orthodontics needs to maintain the three-dimensional position of the mandible in balance with its bone and muscle planes achieved in the FIRST PHASE, and whenever possible maintain the Physiological Relationship of the Jaw Head with the Articular Disc.
It is fundamental to understand, that this passage has to be made keeping the DIO (intraoral device, together with the different devices to be used for the dental eruption)

47 DEPOIMENTO 3

Patient’s statement:

After long three years of failure looking for a treatment for my problem in my city, I found Dr. Lidia in a simple Google search.

I went to her and with a proposal completely different from the others, we started the new treatment immediately.

I was in an advanced stage, where I had  headache all day, pain in the ear, swollen eye (often unable to open), right side of the swollen face too (like a mumps), pain in the neck, pain in my back and also on foot.

I had no quality of life, because I was in pain all the time. When I started the treatment in the first two days I did not feel any more headaches. With the monthly follow up, adjusting as my body asked, I no longer felt any pain in anything and I returned to a normal life.

Today I am in the middle of the second phase, super anxious to go to the end and every month that passes I feel better and better.

Treatment of TMJ Pathologies: Patient with headache and excessive clenching. Physiological Neuromuscular Rehabilitation. First and second phase. Case Report.

1 frontal inicial rosto

A 32-year-old male patient presents at the clinic with complaints of constant headaches, pain in the jaw and daily pressure on the teeth.
The patient also reports pain in the temporomandibular joints and pain to open the mouth.

2 lateral inicial rosto

The patient also reports bilateral clicks and the sensation of clogged ears.
It also states in its clinical history difficulty in chewing and opening the mouth and inability to control teeth tightening.
The patient reported that he sought various dentists and treatments and that he had previously used “miorelaxant” splints that did not alleviate the referred symptoms.

3 OCLUSÃO 1

Habitual occlusion of the patient on the day of the consultation.
The patient had a deep bite and significant wear on the upper and lower incisors.

4 OCLUSAIS

Upper and lower occlusal views of the patient prior to treatment. Wear on lower and upper incisors.

5 PANORAMICA INICIALInitial panoramic radiograph of the patient before treatment.

Absence of teeth 18, 28, 38, 48.

Horizontal resorption of alveolar ridges.

6 P6 INICIAL

Patient TMJ laminography in habitual occlusion before treatment.

The laminography of the temporomandibular joint shows retroposition of the articular processes in the articular cavities when the mandible is in position of maximum intercuspation
In the mandibular aperture, the presence of osteophytes was observed in both condyles.Flattening of the superior anterior surface of the articular processes and superior posterior of the right articular process.

7 TELE PERFIL INICIAL

Lateral radiograph and patient profile in habitual occlusion before treatment. Rectification of the cervical spine.

8 C7 INICIAL

Lateral and cervical radiograph of the patient in habitual occlusion before treatment. Rectification of the cervical spine.

9 FRONTAL INICIAL

Frontal radiography of the patient in habitual occlusion before treatment.

10 ress1

MRI: sagittal slices of the left closed TMJ before treatment. The mandibular head is in retro position. The joint disc is slightly dislocated.
The articular disc has a reduction in open-mouth maneuvers. Open mouth images not included in this post.

11 ress3

MRI: sagittal slices of the left closed TMJ before treatment. The mandibular head is in retro position. The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.
Open mouth images not included in this post.

12 b ress

MRI: sagittal slices of the right closed TMJ before treatment. The mandibular head is in retro position. The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.
Open mouth images not included in this post.

13 ress4

MRI: sagittal slices of the right closed TMJ before treatment. The mandibular head is in retro position. The articular disc is displaced anteriorly, with reduction in maneuvers in open mouth.
Open mouth images not included in this post.

13 cineciog 1

Patient’s initial cineciographic record
Three-dimensional view of the mandibular movement.
The record shows opening and closing and speed when making these moves. The patient shows an opening of more than 50 mm
Note a significant loss of speed in the mandibular closure.

13 eletromiografia inicial

Dynamic electromyographic record in patient’s habitual occlusion before treatment.

Note very little activation of the right and left masseter muscles in maximal intercuspation, indicating to the patient to bite hard without opening his mouth.

The masseter muscles are the most powerful muscles of the stomatognathic system, even more considering a  brachyfacial biotype patient as in this case.

13 REGISTRO

To correctly evaluate the Maxilomandibular relationship we should begin to consider the physiological rest mandible position.

Physiological rest is a concept applicable to all the muscles of the body.

The stomatognathic musculature is no exception.

The patient’s masticatory muscles were deprogrammed electronically and a new physiological neuromuscular position at rest was recorded.

The patient has a pathological free space of 8,2 mm, already discounting the two physiological mm of a healthy free space.

The patient also presented a 2 mm mandibular retro position

13C PRIMEIRA ORTESE LUIS

With these data we constructed a DIO (intraoral device), to maintain the three-dimensional recorded position. This device must be electromyographically tested to objectively measure the patient.

It is logical that the report of the patient’s symptomatology is important, but the surface electromyography shows in an objective way if the muscular function improved, worsened or did not modify.

13A FRONTAL DIO

Frontal radiography of the patient with the DIO (intraoral device) constructed in a physiological neuromuscular position.

13B LATERAL COM DIO

Lateral and cervical radiograph of the patient with the DIO (intraoral device) constructed in a physiological neuromuscular position.

The second MRI is requested after one year on average of the first phase treatment, also during the second phase of the treatment, the patient is monitored, and the device recalibrated or changed according to the controlled data throughout this step.

14 ress comp 1

MRI: comparative sagittal sections of the left TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc.

15 ress comp 2

MRI: comparative sagittal sections of the left TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

16 ress comp 3

MRI: comparative sagittal sections of the left TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

17 ress comp DIR

MRI: comparative sagittal sections of the right TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

18 ress comp DIR

MRI: comparative sagittal sections of the right TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

19 ress comp DIR

MRI: comparative sagittal sections of the right TMJ, closed mouth, before and after the Neuromuscular Physiological treatment.
Three-dimensional joint decompression is noted. Primordial objective in this specific case.
Note the best relation between the mandibular head and the articular disc and the positive remodeling of the mandibular head.

20 PRIMEIRA ORTESE DA 2 FASE

The patient did not report any more symptomatology related to the TMJ. Bioinstrumentation also objectively showed an improvement in neuromuscular function.

We decided to start the SECOND PHASE of the treatment to remove the DIO (intraoral device), maintaining the physiological neuromuscular occlusion.

For this we used a three-dimensional orthodontics, where the teeth are erupted to the new neurophysiological position.

21 ORTO 1

In the second phase, in this case the three-dimensional orthodontics,the patient is monitored and deprogrammed electronically, and often the device is recalibrated or changed, to maintain the position obtained in the first phase.

Part of the sequence of the second phase (in this specific clinical case).

22 ORTO 2

Part of the sequence of the second phase (in this specific clinical case).

23 ORTO 3

Part of the sequence of the second phase (in this specific clinical case).

24 ORTO 4

Part of the sequence of the second phase (in this specific clinical case).

25 ORTO 5

Part of the sequence of the second phase (in this specific clinical case).

26 orto 6

Part of the sequence of the second phase (in this specific clinical case).

27 orto 7

Part of the sequence of the second phase (in this specific clinical case).

28 ORTO 8

Finalization of the second phase.

29 OCLUSAIS FINAIS

Patient’s upper and lower occlusal view after the finalization of the second phase.

43 oclusoes comparativas

Comparative occlusion of the patient before and after the end of the second phase of the treatment using a three-dimensional orthodontics.

The non-coincidence of the median dental lines may be noted.
The patient’s fundamental alignment is muscle alignment that does not always coincide with tooth alignment. In this case the muscular alignment is respected.

44 oclusoes comparativas

Patient’s comparative superior and inferior occlusal view, before and after, the end of the second phase of the treatment by a three-dimensional orthodontics.

eletromiografia final

Electromyographic record of the patient in physiological neuromuscular position after the completion of three-dimensional orthodontics.

Note the higher recruitment of motor units in the masseter muscles that previously showed little activity.

30 FRONTAL FINAL

Frontal radiography of the patient after the end of the second phase of the treatment.
Patient in physiological neuromuscular occlusion.

31 TELEPERFIL FINAL

Lateral radiograph and patient profile after completion of the second phase of treatment.
Patient in physiological neuromuscular occlusion.

32 C7 FINAL

Lateral and cervical radiography of the patient after the end of the second phase of the treatment.
Patient in physiological neuromuscular occlusion.

33 PANORAMICA FINAL

Panoramic radiograph of the patient after the end of the second phase of the treatment with three-dimensional orthodontics.

34 LAMINOGRAFIA FINAL

Patient TMJ laminography after the completion of three-dimensional orthodontics.
Patient in physiological neuromuscular occlusion.

35 comparativas panoramicas

Comparative panoramic radiographs of the patient: before treatment and after finishing with three-dimensional orthodontics.

36 comparativas laminografias

Patient comparative TMJ laminography: before treatment and after completion with three-dimensional orthodontics.

40 COMPARAÇÃO TELE PERFIL

Comparative lateral and profile radiographs of the patient: before treatment and after finishing with three-dimensional orthodontics.

Take into account that the result corresponds more to a three-dimensional recovery of the vertical dimension and not simply to an anteroposterior modification.
Even a retroposition of the mandibular head is the product of a three-dimensional alteration.

41 COMPARAÇÃO FRONTAIS

Comparative frontal radiographs of the patient: before treatment and after finishing with three-dimensional orthodontics.

42 C7 COMPARATIVAS

Comparative patient lateral and cervical radiographs: before treatment and after completion with three-dimensional orthodontics.

46 DEPOIMENTO 1

At the end of 2012, I attended the Life and Health program on RBS TV and saw a report with Dr. Luis Daniel Yavich Mattos, on the treatment of problems related to TMJ.

Living with constant headaches, jaw pain and daily pressure on the teeth,

I decided to bet on the treatment and I do not regret it.

Since I was 18 years old, I had been suffering from pain in the TMJ region, and what

bothered me was a pressure that made me want to grind my teeth even

day, which I have always identified as bruxism.

I had already sought out various dentists and treatments, with the use of the famous splints to sleep. The diagnosis was always the same: emotional stress was the cause of my teeth and constant pains, although the pains started only after I have extracted my first wisdom.

47 DEPOIMENTO 2

I used to use the plates to sleep during the 24 hours of the day, so the will of biting and grinding teeth. The use of the splints  prevented wear, but the pressure I felt to bite and grind my teeth caused me TMJ fatigue and headaches.

And when I had no more hope emerged, the possibility of doing the treatment with Dr. Luis Daniel and Dr. Lidia Yavich, when I was 32 years old.

With Dr. Luis Daniel they were approximately 1 year and 2 months  using a very high plate, 24 hours a day, including to make meals, which I only took to do the oral hygiene.

The device was called the “big monster,” because of the height. In the end, no longer  pain and without the will of grinding and biting my teeth.

I went on to the second stage of treatment, now with Dr. Lidia Yavich.

48 DEPOIMENTO 3

With Dr. Lidia were approximately 3 years, in which I used fixed dental appliance, with brackets, steel wires, etc., in order to be able to stop using the board 24 hours a day, and improve the aesthetics of my dental arch.

As the treatment progressed, the device was diminished and new splints were used in order of erupting my teeth respecting the TMJ position.

At the end of the treatment, I now use one sleeping device and another one for aesthetic reasons.

I no longer have the willingness to bite and grind teeth, or pain in the TMJ or headaches. I can yawn without worrying about hurting my jaw.

Finally, it was an individualized, artisanal treatment that required time and dedication, and brought excellent results, which is why I am eternally grateful to Dr. Luis Daniel and to Dr. Lidia.

 

TMJ Pathology in Professional Musicians: A look beyond the risk factors. Physiological Neuromuscular Rehabilitation. First and second phase. Case Report.

Several articles and studies cite the prevalence of TMJ dysfunction in violinists and violists, especially by prolonged flexion of the head and shoulder, posture necessary to keep the violin in position. Studies also report that the incidence of TMJ dysfunction in musicians is similar to the general population.

Professional musicians require many hours of training and improvement that involve complicated movements, fast and repetitive actions with over use of the hands, fingers, arms and head.

Most articles report anxiety about professional performance and increased muscle tension, but few do a particular study of the state of the anatomical structures of the cases studied.

1 postura inicial frontalA 45-year-old female patient referred by her physiotherapist consults with complaints of headache, pain in the cervical and scapular region, muscular contractures in the mandible.

The patient also reports mandibular displacement when playing the violin and pain in both temporomandibular joints.

2 postura inicial lateralThe patient also reports clicks in both temporomandibular joints and occasionally the sensation of clogged ears.

Frequent pain in the spine and both shoulders.

At that time the patient had already consulted physiotherapists, rheumatologists, psychiatrists and psychologists.

2 bpontos de dorMarking chart of pain points.

3 OCLUSÃO INICIALImage of the patient’s habitual occlusion on the day of the appointment.

4 OCLUSAIS INICIAISUpper and lower occlusal views of the patient on the day of the consultation.

5 PANORAMICA 1Initial panoramic radiograph of the patient before treatment.

Teeth 18, 28 included.

Wear on the incisal and occlusal faces of the teeth present.

Prosthetic device 25 to 27 (26 pontic)

Horizontal resorption of alveolar ridges.

6 LAMINOGRAFIA INICIALPatient’s TMJ initial laminography before treatment

In the maximum opening position, observe the anterior angulation of the articular processes. Structural modification of the mandibular condylar process as one of the sequels of traumatism in infancy.

The patient reports a trauma in early childhood, a knock on the head while playing on a slide.

7 TELEPERFILLateral radiograph and patient profile before treatment. Patient in habitual occlusion.

8 FRONTALFrontal radiography of the patient in habitual occlusion before treatment.

9 C7Lateral and cervical radiograph of the patient in habitual occlusion before treatment.

At this time, the patient performed a CT scan of the cervical spine

In the report there is rectification of cervical lordosis.

Degenerative discopathy in C5-C6, observing reduction of the height of the disc space and osteophytic proliferations reactional. At this level the disc-osteophyte bar is identified that touches and distorts the ventral face of the dural sac.

There is no stenosis of the central vertebral canal.

Neural foramina with amplitude within the limits of normality.

Mild signs of uncovertebral arthrosis C5 and C6.

Relationship C1-C2 maintained.

Symmetric paravertebral regions.

10 eletromiog dinamica inicialDynamic electromyographic record in patient’s habitual occlusion before treatment. Note the minimal activation of the right and left masseter muscles in maximal intercuspation and the high activation of the right and left temporal muscles.

The masseter muscles are the most powerful muscles of the stomatognathic system, the temporal muscles even being elevating muscles have to have an equal and preferably smaller activation than the masseter muscles.

11 cineciog 1Initial cineciographic record of the patient.

Three-dimensional view of the mandibular displacement.

The record shows mandible opening, closing and speed when the patient makes these movements. The patient shows a 47 mm opening and a right deflection of 3.9 mm

Note a significant  loss of velocity in the middle of the mandibular closure.

13 ress esq fechMRI: sagittal slice of the left TMJ, closed mouth, anteversion of the mandibular condyle can be observed.

14 ress esq fechMRI: Another sagittal slice of the left TMJ in the closed mouth, the anteversion of the mandibular condyle can be observed.

Important area of retrodiscal compression at the level of mandibular condyle deflection. Primary objective has to be the three-dimensional decompression of the mandibular condyle.

15 ress esq fechMRI: Another sagittal slice of the left TMJ in the closed mouth, the anteversion of the mandibular condyle can be observed.

Important area of retrodiscal compression at the level of mandibular condyle deflection. Primary objective has to be the three-dimensional decompression of the mandibular condyle.

16 ress esq fechMRI: internal sagittal slice of the left TMJ, closed mouth.

17ress dir fechMRI: internal sagittal slice of the right TMJ, closed mouth.

18ress dir fechMRI: another sagittal slice of the right TMJ, closed mouth, the anteversion of the mandibular condyle can be observed.

The articular disc is displaced anteriorly, with reduction in open-mouth maneuvers. (open mouth images not included in the post)

Important area of retrodiscal compression at the level of mandibular condyle deflection. Primary objective has to be the three-dimensional decompression of the mandibular condyle.

19 ress dir fechMRI: another sagittal slice of the right TMJ, closed mouth, the anteversion of the mandibular condyle can be observed.

The articular disc is displaced anteriorly, with reduction in open-mouth maneuvers. (open mouth images not included in the post)

Important area of retrodiscal compression at the level of mandibular condyle deflection. Primary objective has to be the three-dimensional decompression of the mandibular condyle.

20 ress dir fech

MRI: another sagittal slice of the right TMJ, closed mouth, the anteversion of the mandibular condyle can be observed.

The articular disc is displaced anteriorly, with reduction in open-mouth maneuvers. (open mouth images not included in the post)

Note the posterior compression in this section.

Primary objective has to be the three-dimensional decompression of the mandibular condyle.

21 FRONT DIR E ESQMRI: frontal slice of right and left temporomandibular joints, closed mouth in habitual occlusion before treatment.

The frontal slice of the right temporomandibular joint shows a loss of joint space, especially in the region of the external lateral pole of the joint. Both frontal images show a decrease in joint space.

Slight medial disc deviation.

21A registro inicial para o DIOTo correctly evaluate the maxillomandibular relationship we should begin to consider the physiological rest mandible position.

Physiological rest is a concept applicable to all the muscles of the body.

The stomatognathic musculature is no exception.

The patient’s masticatory muscles were deprogrammed electronically and a new physiological neuromuscular position at rest was recorded.

The patient has a pathological free space of 5.8 mm, already discounting the two physiological mm of a healthy free space.

The patient also presented a 2.1 mm mandibular retroposition

22 oclussao com o DIOWith these data we constructed a DIO (intraoral device), to maintain the three-dimensional recorded position. This device must be electromyographically tested to objectively measure the patient.

It is logical that the report of the patient’s symptomatology is important, but the surface electromyography shows in an objective way if the muscular function improved, worsened or did not modify.

22A eletromiografia com o DIOElectromyographic record with DIO (intraoral device) in physiological neuromuscular position.

Note the higher recruitment of motor units in the masseter muscles that previously showed very little activity.

22A Registro cinesiográfico para controlar o DIO em posição neurofisiológicaCineciographic record for the DIO (intraoral device) control in physiological neuromuscular position as the device is changed or recalibrated.

In the first phase the intraoral devices are recalibrated and / or changed according to each specific case as the jaw, muscles and TMJ improve.

Each case IS UNIQUE. There are cases where the TMJ structures are so damaged that the objectives outlined will have limitations dictated by the initial diagnosis.

These limitations refer not only to the structures of the temporomandibular joint, but also to the patient’s systemic condition.

22B 2 Registro cinesiográfico para controlar o DIO em posição neurofisiológicaAnother cineciographical record to control the Dio in a physiological neuromuscular position as the device is changed or recalibrated.

23 laminografias comparativas com dioComparison of left and right temporomandibular joint laminography, closed and open mouth: in habitual occlusion before treatment and with the DIO (intraoral device), in a physiological neuromuscular position.

24 ct comparativas com dioComparison of lateral radiographs and cervical spine of the patient: in habitual occlusion before treatment and with the DIO (intraoral device), in a physiological neuromuscular position.

With the jaw in a physiological neuromuscular position the physiotherapist colleague worked the rest of the muscle chains, using global manual techniques, always taking into account the individuality of the patient. This work in a patient with degenerative discopathies should be maintained

25 rad lateral e perfilComparison of lateral radiographs of the patient: in habitual occlusion before the treatment and with the DIO (intraoral device), in a physiological neuromuscular position.

Improvement of the profile and recovery of the vertical dimension.

26TELEFRONTAIS COMPARATIVASComparative frontal radiographs of the patient: at the beginning of treatment in habitual occlusion, during treatment with DIO (intraoral device) in physiological neuromuscular occlusion.

27 PANORAMICA com o DIOPanoramic radiograph of the patient with the DIO constructed in a physiological neuromuscular position.

47 ress esqu comparativa 1MRI: comparative sagittal slices of the left TMJ, closed mouth, before and after the physiological neuromuscular treatment.

Three-dimensional joint decompression is noted. Primordial objective in this specific case.

48 ress esqu comparativa 1MRI: comparative sagittal slices of the left TMJ, closed mouth, before and after the physiological neuromuscular treatment.

Three-dimensional joint decompression is noted. Primordial objective in this specific case.

49 ress esqu comparativa 1MRI: comparative sagittal slices of the left TMJ, closed mouth, before and after the physiological neuromuscular treatment.

Three-dimensional joint decompression is noted. Primordial objective in this specific case.

50 ress esqu comparativa 1MRI: comparative sagittal slices of the left TMJ, closed mouth, before and after the physiological neuromuscular treatment.

Three-dimensional joint decompression is noted. Primordial objective in this specific case.

51 ress direita comparativa 1MRI: comparative sagittal slices of the right TMJ, closed mouth, before and after the physiological neuromuscular treatment. In this section we can see the improvement in the discal condylar relationship obtained.

Three-dimensional joint decompression is noted. Primordial objective in this specific case.

51a ress direita comparativa 1MRI: comparative sagittal slices of the right TMJ, closed mouth, before and after the physiological neuromuscular treatment. In this section we can see the improvement in the discal condylar relationship obtained.

Three-dimensional joint decompression is noted. Primordial objective in this specific case.

52 ress direita comparativa 1MRI: comparative sagittal slices of the right TMJ, closed mouth, before and after the physiological neuromuscular treatment. In this section we can see the improvement in the discal condylar relationship obtained.

Three-dimensional joint decompression is noted. Primordial objective in this specific case.

53 ress esquerda frontal comparativa 1

MRI: Comparison of the frontal slice of the LEFT TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same LEFT TMJ after the FIRST PHASE.

Note the decompression of the temporomandibular joint, especially in the lateral pole.

54 ress direita frontal comparativa 1

MRI: Comparison of the frontal slice of the RIGHT TMJ, closed mouth, before the physiological neuromuscular treatment, and of the same RIGHT TMJ after the FIRST PHASE.

Note the decompression of the temporomandibular joint, especially in the lateral pole.

The patient did not report any more symptomatology related to the TMJ. Bioinstrumentation also objectively showed an improvement in neuromuscular function.

It was decided to start the SECOND PHASE of the treatment to remove the DIO (intraoral device), maintaining the physiological neuromuscular occlusion.

For this we used a three-dimensional orthodontic, where the teeth are erupted to the new neurophysiological position.

55 ORTO 1In the second phase, in this case the three-dimensional orthodontics the patient is monitored and deprogrammed electronically, and often the device is recalibrated, to maintain the position obtained in the first phase.

Part of the sequence of the second phase (in this specific clinical case).

56 PANORAMICA COM O IMPLANTEPatient’s panoramic radiograph after the installation of the implant and the removal of the retained upper third molars.

57 ORTO 2Part of the sequence of the second phase (in this specific clinical case).

58 ORTO 3Part of the sequence of the second phase (in this specific clinical case).

59 ORTO 4Part of the sequence of the second phase (in this specific clinical case).

60 ORTO 5

Part of the sequence of the second phase (in this specific clinical case). Photograph of orthodontic wire before cutting from the right side for didactic purposes.

61 ORTO 6Part of the sequence of the second phase (in this specific clinical case). Photograph of orthodontic wire before cutting from the right side for didactic purposes.

62 ORTO 7Part of the sequence of the second phase (in this specific clinical case).

63 ORTO 8Part of the sequence of the second phase (in this specific clinical case).

64 ORTO 9Part of the sequence of the second phase (in this specific clinical case).

65 ORTO10Part of the sequence of the second phase (in this specific clinical case).

66 ORTO101Part of the sequence of the second phase (in this specific clinical case).

67 ORTO102Part of the sequence of the second phase (in this specific clinical case).

68 ORTO103Part of the sequence of the second phase (in this specific clinical case).

68 RETIRADA DO DIORemoval of the DIO (intraoral device)

69 ORTO104Part of the sequence of the second phase (in this specific clinical case).

70 ORTO105Finalization of the second phase.

71 OCLUSAL FINALPatient’s upper and lower occlusal view after the finalization of the second phase.

72 b panoramicas comparativasPatient’s comparative panoramic radiographs before and after the end of the second phase of the treatment using a three-dimensional orthodontics.

72 comparação OCLUSAIS FINAISPatient’s comparative superior and inferior occlusal view, before and after, the end of the second phase of the treatment by a three-dimensional orthodontic.

72 OCLUSÃO IcomparativasComparative occlusion of the patient before and after the end of the second phase of the treatment using a three-dimensional orthodontics.

77 registro controle após a ortodontiaKinesiographic control record after the completion of the three-dimensional orthodontics in a physiological neuromuscular position.

Coincident neuromuscular trajectories.

73 laminografias finalLaminography of the patient in physiological neuromuscular occlusion after the finalization of the second phase of the treatment.

74 3 laminografias comparativasComparative laminography of the patient: before the treatment, during the first phase of the treatment and after the finalization by the three-dimensional orthodontics.

75 TELEFRONTAIS COMPARATIVASPatient’s comparative frontal radiographs: before the treatment, during the first phase of the treatment and after the finalization by the three-dimensional orthodontics.

76 rad lateral e perfil comparativas 3Patient’s comparative lateral radiograph and profile: before the treatment, during the first phase of the treatment and after the finalization by the three-dimensional orthodontics.

78 DEPOIMENTO 1

Patient testimony:

What made me look for the treatment were recurrent headaches, frequent

(weekly) and intense, which lasted, on average, 2 days, affecting my productivity

at work as well as leisure hours.

The pain did not subside with common analgesics, requiring strong medication, which, in turn, only softened the pain a little.

Today, after the treatment, I can say that only very rarely do I suffer from these pains, greatly improving the quality of life, besides the posture.

TMJ Pathologies Treatment: Patient with headache for 30 years. Neuromuscular Physiological Rehabilitation. First and second phase. Case Report.

1 FOTOS FRENTE

A 54- year old female patient arrives to the clinic for consultation, referred by her rheumatologist with complaints of daily headache since her 23 years of age. The patient associates the beginning of the headache with the installation of a definitive crown on the right upper central incisor. When she was 12 years old the suffered a traumatism that provoked the fracture of the tooth. The patient also reports bruxism.

2 FOTOS PERFIL 2

The patient reports that in consultation with a neurologist, a nuclear magnetic resonance of the skull was requested, in which a change in white matter was detected.

At the same time the patient consults with a cardiologist. A FOP (Patent Oval Form) is detected, with no need for a surgical approach.

2A

After years and years of consultations and treatments for daily headaches, the patient also has a diagnosis of fibromyalgia.

The patient makes use of marevan, 5mg daily as indicated by the Cardiologist.

Sandomigran 1 time per day per Neurologist indication.

Nexium 40 mg once daily indication of Gastroenterologist.

Marevan works in the prevention of venous thromboembolism, systemic embolism in patients with prosthetic heart valves or atrial fibrillation, stroke, acute myocardial infarction and recurrence of myocardial infarction. Oral anticoagulants are also indicated in the prevention of systemic embolism in patients with cardiac valve disease.

Sandomigran, pizotifen is an antaminic characterized by its polyvalent inhibitory effect on biogenic amines, such as serotonin, histamine and tryptamine. It is suitable for the prophylactic treatment of migraine, reducing the frequency of seizures. Pizotifen also has appetite-stimulating properties and is mildly antidepressant.

Nexium: Expected action of medication, disappearance of symptoms of heartburn, epigastric pain and acid regurgitation. Healing of peptic ulcers.

3 dentes

Habitual occlusion of the patient on the day of the consultation. Note the persistence of a lower deciduous tooth on the left side.

4 OCLUSAIS

Upper and lower occlusal views of the patient on the day of the consultation. Note the persistence of a lower deciduous tooth on the left side.

Presence of bilateral torus mandibularis.

The lower incisors show signs of wear.

5 PANORAMICA 1

Absence of dental elements 18, 28, 38 and 48. Maintenance of element  75  in the dental arch. The element 11 is endodontically treated. Presence of fixed prosthesis with intracanal pin in element 11.

6 LAMINOGRAFIA INICIAL

The laminography of the temporomandibular joints shows a modification of the growth axis of both mandibular condyles caused by a trauma in the early childhood, (greenstick fracture).

7 TELEPERFIL

Lateral radiograph of the patient in habitual occlusion before treatment.

8 FRONTAL

Frontal radiography of the patient in habitual occlusion before treatment.

9 C7

Lateral and cervical radiograph of the patient in habitual occlusion prior to treatment. Note the loss of space between the cervical vertebrae, especially between C5 and C6, where osteophytes are also observed.

10

MRI: Sagittal slice of the left TMJ in the closed mouth, we can observe the anteversion of the mandibular condyle. Facet on the superior surface and posterior flattening of the mandibular condyle. The articular disc is displaced anteriorly, with reduction in open-mouth maneuvers. (Open mouth images not included in the post).

Notice the posterior compression in this slice.

In the magnetic resonance image of the temporomandibular joints it is fundamental to read the structure of the disc  besides the position of the disc.

An articular disk as in this specific case, thin, without a real structure capable of maintaining a good function, the primary objective has to be the tridimensional decompression of the mandibular condyle. This particular articular disc has no structure to fulfill the function for which it is intended.

11

MRI: another sagittal slice of the left TMJ in the closed mouth, we can observe the anteversion of the mandibular condyle. The articular disc is displaced anteriorly, with reduction in open-mouth maneuvers. (Open mouth images not included in the post).

In the magnetic resonance image of the temporomandibular joints it is fundamental to read the structure of the disc  besides the position of the disc.

An articular disk as in this specific case, thin, without a real structure capable of maintaining a good function, the primary objective has to be the tridimensional decompression of the mandibular condyle. This particular articular disc has no structure to fulfill the function for which it is intended.

12

MRI: Sagittal slice of the right TMJ in the closed mouth, we can observe the anteversion of the mandibular condyle. Facet on the superior surface and posterior flattening of the mandibular condyle. The articular disc is displaced anteriorly, with reduction in open-mouth maneuvers. (Open mouth images not included in the post).

In the magnetic resonance image of the temporomandibular joints it is fundamental to read the structure of the disc  besides the position of the disc.

An articular disk as in this specific case, thin, without a real structure capable of maintaining a good function, the primary objective has to be the tridimensional decompression of the mandibular condyle. This particular articular disc has no structure to fulfill the function for which it is intended.

13

MRI: another sagittal slice of the right TMJ in the closed mouth, we can observe the anteversion of the mandibular condyle. Posterior flattening of the mandibular condyle. The articular disc is displaced anteriorly, with reduction in open-mouth maneuvers. (Open mouth images not included in the post).

Notice the posterior compression in this slice.

In the magnetic resonance image of the temporomandibular joints it is fundamental to read the structure of the disc  besides the position of the disc.

An articular disk as in this specific case, thin, without a real structure capable of maintaining a good function, the primary objective has to be the tridimensional decompression of the mandibular condyle. This particular articular disc has no structure to fulfill the function for which it is intended.

14

MRI: another sagittal  slice of the left TMJ in the closed mouth.

Notice the posterior compression in this slice.

An articular disk as in this specific case, thin, without a real structure capable of maintaining a good function, the primary objective has to be the tridimensional decompression of the mandibular condyle. This particular articular disc has no structure to fulfill the function for which it is intended.

17 registro inicial para o DIO

The patient’s masticatory muscles were electronically deprogrammed and the mandible rest position was recorded with a computerized kinesiograph.

An intraoral device (DIO) was made to for three- dimensional mandible repositioning.

The patient presented a pathological free interocclusal space of 4,4 mm, a mandibular retroposition of 1, 6 mm, also a right deviation of 1 mm.

20 OCLUSAO DIO

The PHYSIOLOGICAL NEUROMUSCULAR position was recorded in the form of an occlusal bite record, which was later used to make a DIO (intraoral device)

21 Registro cinesiográfico para controlar o DIO em posição neurofisiológica

Control of the intraoral device registration (DIO). These controls are frequently performed during the first phase of the treatment, also monitored by surface electromyography. On average this first phase lasts one year. Modifying and improving PHYSIOLOGICAL NEUROMUSCULAR POSITION.

22 RC1

MRI: comparative sagittal sections of the left TMJ closed before and after the Neuromuscular Physiological treatment.
Notice the three-dimensional joint decompression. Primordial objective in this specific case.

23RC2

MRI: another comparative sagittal sections of the left TMJ closed before and after the Neuromuscular Physiological treatment.
Notice the three-dimensional joint decompression. Primordial objective in this specific case.

25 B RC5

MRI: comparative sagittal sections of the right TMJ closed before and after the Neuromuscular Physiological treatment.
Notice the three-dimensional joint decompression. Primordial objective in this specific case.

25 ARC4

MRI: another comparative sagittal sections of the right TMJ closed before and after the Neuromuscular Physiological treatment.
Notice the three-dimensional joint decompression. Primordial objective in this specific case.

24RC3

MRI: another comparative sagittal sections of the right TMJ closed before and after the Neuromuscular Physiological treatment.
Notice the three-dimensional joint decompression. Primordial objective in this specific case.

After the completion of the first phase of the treatment of TMJ pathologies and the patient WITHOUT HEADACHE, we began the second phase of TMJ pathology treatment.

In this specific case: three-dimensional orthodontics together with the rehabilitation of the necessary dental pieces and aesthetic improvement of the patient’s anterior teeth.

25 PANORAMICA ANTES DA ORTO

At this point I had to make a decision regarding the permanence of the deciduous tooth, firm and without mobility.

I did not think I should extract it for the placement of the implant, but to maintain it.

I clarified to the patient that during orthodontics we could lose it. I understood that this would have a compromise in the patient’s occlusion, but this fact did not concerned me, with the TMJ being decompressed and the patient functioning well, both electromyographically and in the computerized kinesiograph tests.

25 ORTO 1

The second phase with three-dimensional orthodontics is started in the second phase of the treatment of TMJ pathologies in this specific patient.

26 ORTO 2

The second phase with three-dimensional orthodontics is started in the second phase of the treatment of TMJ pathologies in this specific patient.

27 ORTO 3

The second phase with three-dimensional orthodontics is started in the second phase of the treatment of TMJ pathologies in this specific patient.

28 ORTO 4

The second phase with three-dimensional orthodontics is started in the second phase of the treatment of TMJ pathologies in this specific patient.

29 reconst do dente desiduo

Direct composite resin reconstruction of  the 75 and 37 elements maintaining patient’s  Neuromuscular Physiological position.

30 ORTO 6

Sequence of three-dimensional orthodontics in the second phase of TMJ pathologies treatment in this specific patient. Direct composite resin reconstruction of  the 75 and 37 elements maintaining patient’s  Neuromuscular Physiological position.

31 ORTO 8

Sequence of three-dimensional orthodontics in the second phase of TMJ pathologies treatment in this specific patient. Preparation for the reconstruction of elements 33, 32, 31, 41, 42 and 43 maintaining the patient’s Neuromuscular Physiological position.

32 ORTO 9

Direct composite resin reconstruction of  33,32,31,41,42 and 43 elements maintaining the patient’s Neuromuscular Physiological position, with three-dimensional orthodontics.

33 lentes de contato

After the resolution of the strong headache (reason why the patient consulted the clinic) and the finalization of the tridimensional orthodontics, it was decided to make laminated facets from canine to canine for aesthetic reasons.

34 Finalizaçaoo da primeira e segunda fase

Completion of the First and Second Phases in the treatment of TMJ Pathologies. Physiological Neuromuscular Rehabilitation.

36 LPANORAMICA FINAL

Patient’s panoramic radiograph after the end of the treatment in the Neuromuscular Physiological Dentistry.

37 LAMINOGRAFIA FINAL

Patient’s temporomandibular joints laminography  in physiological neuromuscular occlusion after treatment completion.

38 FRONTAL final

Patient’s frontal radiograph  in physiological neuromuscular occlusion after treatment completion.

39 LATERAIS COMPARATIVAS

Patient’s comparative lateral radiographs  before and after treatment. The first  in habitual occlusion and the second in physiological neuromuscular occlusion.

45 DEPOIMENTO 1

At age 11, I had a fall and broke the upper incisor tooth. At the time, I sought a dentist and he said that I should wait for the adult stage to make the porcelain definitive crown.

In 1986, when I was 23, I went to another dentist to make the crown. After the root canal treatment, the crown was placed.

In that moment I felt that there was an elevation that touched the lower tooth. The next day I woke up with an endless headache. Day by day the pain intensified.

I returned to the dentist and reported the fact, he said that in time it would settle. For 25 years I investigated the reason for my headache with several doctors.

In 2006 a rheumatologist asked me for an MRI of the skull, changes were identified in the gray matter. During this period, I was admitted to HMV for an investigation, and the diagnosis was SAF, topiramate 50 mg was introduced as a preventive of migraine and anticoagulant.These drugs were used from 2006 to 2011.

45 DEPOIMENTO 2

In 2007, I underwent systemic chemotherapy with METOTREXATE for 1 year. In 2011 another pain site showed up, this time in the hip, so I underwent corticoid in the vein for 6 months.

I decided to abandon the treatment, because it was no use. I looked for a respected neurologist who switched all my medication for an anti-allergy for headache prevention and an antiplatelet.

The diagnosis was leukoencephalopathy in a small degree. I also gave up treatment, because it did not work, either.

This neurologist referred me to another rheumatologist who examined me and identified a problem in my TMJ and a bursitis in the hip.

The same rheumatologist sent me to Dr. Lidia Yavich and to an orthopedist. In a short time I did not feel the same headache when I woke up. After all this, I continue to do MRI, and the changes have stabilized.

45 DEPOIMENTO 3

 

I sought an opinion from a second neurologist, and he thinks that all the changes I have are due to the intensity of the headache that I felt daily.

He did not agree with any diagnosis made so far.

I also believe that, because after the treatment with Dr. Lidia, I regained my quality of life.

The medication I use today: antiplatelet due to the existing changes and because I have a patent foramen ovale.

I thanks also to Dr. Luis Daniel for the conjunct treatment restoring function and aesthetics.

 

Reestablishment of the Bone Marrow Signal in a case of Avascular Necrosis of the Mandibular Head. Monitoring two years after treatment.

Preparing a new publication of the TMJ (temporomandibular joint) study and investigation page, I received the new MRI (magnetic resonance imaging) that I requested for the patient presented in the last clinical case published.

I decided that it was high priority to publish this follow up before the next clinical case.

Recapitulating the clinical situation and the images of the patient after treatment:

The patient had remission of symptoms.

The patient had improved function and recovered the vertical dimension.

The patient had improved aesthetics (recovering the vertical dimension).

The patient had recovered the mouth opening, without presenting limitation as observed before treatment.

The patient had improved her posture.

Is important to highlight that in this case, with discs of reduced dimensions lying anteriorly displaced WITHOUT REDUCTION when the mouth opened, the goal was to decompress, to recover the vertical dimension, and to wait for the medullary signal recovery by decompression, remembering that all bacteriological and rheumatologic research was negative.

At the end of treatment the MRI (magnetic resonance imaging) of the patient showed a MEDULAR SIGNAL IMPROVEMENT, yet still far from satisfactory recovery in terms of image, EVEN TAKING INTO ACCOUNT the improvement of symptomatology.

I will post some of the most remarkable initial MRI images before the treatment, to review the clinical case in detail enter in this link.

This publication will emphasis the images, a fundamental tool for understanding what we really can achieve beyond the patient’s clinical improvement.

Understanding the positive or negative changes in the structures affected in TMJ pathologies is critical in the comprehension of the etiology that led to the deterioration of the patient’s structures and consequently triggered the symptoms that affected the quality of life of our patients.

REMEMBERING THAT THIS IMPLIES A DIFFERENTIAL AND UNIQUE DIAGNOSIS FOR EACH CASE.

12 RNM DIREITA INICIAL

MRI: sagittal slice of the right TMJ closed mouth.

There is an irregularity of contour with reduction of the superior aspect of the mandibular condyle, the condyle is ante versioned. There is a small anterior osteophyte.

The articular disc is displaced anteriorly, when the mouth opens.

Presence of subcortical bone cysts in the anterior superior aspect of the mandibular condyle.

13 RNM  ESQ  INICIAL

MRI: sagittal slice of the left TMJ closed mouth. There is a substantial irregularity of contour of the upper portion of the mandibular condyle, with the formation of an anterior osteophyte.

There is a rectification of the articular eminence.

The disc has reduced dimensions lying anteriorly displaced when the mouth opens.

CAN BE SEEN AN IMPORTANT HIPOSSINAL COMPATIBLE WITH AVASCULAR NECROSIS.

Osteonecrosis of the mandible head corresponds to the death of bone tissue also called avascular necrosis.

The alteration in the bone marrow of the mandibular condyle is a possible source of TMJ pain.

To  remember and follow in detail all the images and description of the case report, the reader should return to the previous post.

13A RNM  ESQ  INICIAL

MRI: another sagittal slice of the left TMJ closed mouth.

There is an important  irregularity of contour of the superior aspect of the mandibular condyle and a formation of an anterior osteophyte.

There is a rectification of the articular eminence.

The disc has reduced dimensions lying anteriorly displaced WITHOUT REDUCTION when the mouth opens.

CAN BE SEEN AN IMPORTANT HIPOSSINAL COMPATIBLE WITH AVASCULAR NECROSIS.

Osteonecrosis of the mandible head corresponds to the death of bone tissue also called avascular necrosis.

The alteration in the bone marrow of the mandibular condyle is a possible source of TMJ pain.

To  remember and follow in detail all the images and description of the case report, the reader should return to the previous post.

16A  ESQ boca fechada 2013 T2

MRI:same previous sagittal slice of the left TMJ, closed mouth in T2

MRI in T2 clearly shows the ARTICULAR EFFUSION.

The differential diagnosis of TMJ effusion has a broad spectrum as the effusions in other joints in other parts of the skeleton.

 MRI (magnetic resonance imaging) can give us a lot of information, not just the disc position.

To  remember and follow in detail all the images and description of the case report, the reader should return to the previous post.

CORTE FRONTAL DA ATM ESQ INICIAL ANTES DO TRATAMENTO 2

MRI, frontal section of the left TMJ, closed mouth.

CAN BE SEEN AN IMPORTANT HIPOSSINAL COMPATIBLE WITH AVASCULAR NECROSIS.

Avascular necrosis occurs when blood flow to a bone is interrupted or reduced. It can be caused by various conditions, such as bone or joint damage, PRESSURE INSIDE THE BONE and other medical conditions.

The condyle affected by avascular necrosis has low signal on T1-weighted images as a result of edematous changes in trabecular bone.

Osteonecrosis of the condylar head corresponds to the death of bone tissue, also called avascular necrosis.

 Alteration in the bone marrow of the mandibular condyle is a possible source of TMJ pain.

CORTE FRONTAL DA ATM DIR INICIAL ANTES DO TRATAMENTO

MRI, frontal section of the right TMJ closed mouth. Upper lesion in the right mandibular condyle, as described in the same sagittal slice of the same condyle as subcortical bone cysts.

To  remember and follow in detail all the images and description of the case report, the reader should return to the previous post.

In the last publication WERE POSTED THE INITIAL IMAGES BEFORE TREATMENT AND THE IMAGES AFTER TREATMENT.

IN THIS PUBLICATION I POSTED THE IMAGES COMPARING: before treatment, after treatment and TWO-YEARS FOLLOW-UP AFTER neurophysiological treatment.

FRONTAL COMPARATIVAS DIREITA 2016

T1-weighted right frontal images comparison: before treatment, after treatment and two years of follow-up after neurophysiological treatment.

We can see the improvement in the medullary signal of the left condyle and the improvement of the superior cortical bone. THE THIRD IMAGE HAS NO TRACES OF THE SUBCORTICAL LESION .

FRONTAL COMPARATIVAS ESQUERDA 2016

T1-weighted left frontal images comparison: before treatment, after treatment and two years of follow-up after neurophysiological treatment.

We can see the improvement in medullary signal of the left condyle in the central image and THE  BONE MEDULLARY RECOVERY IN THE THIRD IMAGE.

THE MANDIBULAR CONDYLE HAS A HELTHY BONE MARROW SIGNAL.

RESS COMP DIREITAS SAGITAL 2016

T1-weighted right sagittal images closed mouth comparison: before treatment, after treatment and two years of follow-up after neurophysiological treatment.

We can see the improvement of the medullary signal and cortical bone. ABSENCE OF SUBCORTICAL BONE CYSTS in the anterior superior aspect of the mandibular condyle OBSERVED IN THE FIRST IMAGE before treatment. Improvement in the cortical bone of the mandibular head.

sagitais comparativas T2

T2-weighted right sagittal images comparison: before treatment, after treatment and two years of follow-up after neurophysiological treatment.

It is clear in the first image the inflammatory signal. In the central image we can notice the improvement of the intramedullary signal and the remission of posterior effusion.

IN THE THIRD IMAGE WE CAN SEE THE TOTAL REMISSION OF THE INFLAMMATORY SIGNAL.

The patient DID NOT USE ANY ANTI-INFLAMMATORY DRUG.

RESS COMP SAGITAL ESQ 2016

T1-weighted left sagittal images comparison: before treatment, after treatment and two years of follow-up after neurophysiological treatment.

We can see the improvement in medullary signal of the left condyle in the central image and THE  BONE MARROW RECOVERY IN THE THIRD IMAGE.

THE MANDIBULAR CONDYLE HAS A HELTHY BONE MARROW SIGNAL.

FINAL 1

All relevant images were posted, nevertheless I think it is important to highlight THIS FRONTAL RIGHT TMJ comparative image because of the MEDULLARY SIGNAL OBVIOUSNESS.

The first image before treatment and the second two years of follow-up after treatment. MEDULLARY BONE WITH AVASCULAR NECROSIS RECOVERED IN A HEALTHY MEDULLARY SIGNAL.

Avascular necrosis occurs when blood flow to a bone is interrupted or reduced. It can be caused by various conditions, such as bone or joint damage, PRESSURE INSIDE THE BONE and other medical conditions.

The differential diagnosis of the alteration in signal intensity of the mandibular condyle begins with the knowledge of the normal characteristics of medullary signal.

FINAL menor

Right and left TMJ sagittal and frontal comparative slices. Before treatment and two years of follow-up after neurophysiological treatment.

finale finale

To  remember and follow in detail all the images and description of the case report, the reader should return to the previous post.

In the previous publication the control images after two years of treatment were NOT posted.

With the application of advanced diagnostic techniques like MRI the alterations of the medullary signal from the mandibular condyle can be detected, similar to those seen in the femoral head with osteonecrosis.

The detection of effusion and bone marrow alterations is important information before the treatment.

 The information of what really we achieve after our treatments in the image beyond the clinical improvement of our patient is also substantial information.

In this case showing the improvement and recuperation of the medullar signal with the correct mandibular reposition and decompression.

Temporomandibular Joint Pathology in a Patient with Congenital Fusion of two Cervical Vertebrae. First and Second Phase. Case Report.

When two adjacent vertebrae are fused since birth, the whole vertebral unit is called congenital vertebral block.

Embryologically this fusion is the result of an error in the normal process of segmentation of somites (segmented structure, formed on both sides of the neural tube) during the differentiation in fetal weeks.

Due to the existence of a mobile segment, free joints  (non-fused), on top and underneath the vertebral block, suffer more stress.

They may also produce an abnormal curvature of the spine.

Understanding the complex inter relation of craniomandibular disorders require a wide comprehension, not only on anatomy and physiology of head and neck, but also of the vertebral spine.

The cervical spine is the flexible link between the head and the trunk.

1 FOTO FRENTEMale patient arrived to the clinic for consultation referring headache, pain behind the eyes mostly on the right side and pain on the right eyebrow.

States that, when he passes his fingertips on the left eyebrow toward the right side, reaching the center he feels pain.

Relates pain in both shoulders.

1B FOTO FRENTE

The patient reports pain and clicking in both temporomandibular joints. He also complaints from a crepitation sensation in both TMJ.

He refers a sensation of blocked ears and bilateral tinnitus.

2 FOTO PERFIL

The patient reports that he tightens the teeth all day, and also mentions nocturnal bruxism.

He also complaints of pain in the back of the neck and pain in the cervical spine.

In his clinical history he reported a car accident when he was 12 year old.

He also had a strong blow in his mouth and mandible. He underwent a surgery on  L3, L4 and L5 because of disk herniation.

3 DENTES Patient’s habitual occlusion image before the treatment in the consultation day.  We can notice the  fractured superior incisors   and the absence of the left superior canine.

4 OCLUSAL SUP E INFSuperior and lower oclusal view of the patient before treatment. In this image we can see the wear of the lower incisors and the fracture of the upper central incisors.

5 PANORAMICAPatient’s initial panoramic radiograph: we can observe the absence of the  18, 23, 28, 38 and 48 elements. We can also notice the maxillary sinus extension on the premolars and molars region.

6 p6Patient temporomandibular joint laminography before treatment: we can observe the superior and posterior position of the right condylar process in the articular cavity  and the lower posterior positioning of the left condylar process in the articular cavity when the jaw is in maximum intercuspidation position.

In the maximum open position, we can observe the anterior angulation of the articular processes. More significant on the left side. Flattening of  the posterior surface of the articular processes.

7 frontalPatient’s frontal radiograph in habitual occlusion before treatment.

8 perfilLateral radiograph in conjunction with the profile image of the patient before treatment.

9 C7Patient’s lateral radiograph and cervical spine before treatment.

The arrow marks the FUSION OF THE CERVICAL VERTEBRAE  C3 and C4.

When two adjacent vertebrae are fused since birth, the whole vertebral unit is called congenital vertebral block.

Embryologically, this fusion is the result of an error in the normal process of segmentation of somites (segmented structure, formed on both sides of the neural tube) during the differentiation in fetal weeks.

Due to the existence of a mobile segment, free joints (non-fused), on top and underneath the vertebral block, suffer more stress.

They may also produce an abnormal curvature of the spine.

9A 1 RNM 1MRI TI: Sagittal slice sequence of the left TMJ closed mouth.

We can see that despite the anterior angulation of the articular process (because of one of the sequels of traumatism in infancy) the disc is positioned at the head of the mandibular condyle.  Notice that the health of the soft elements had been preserved, even so there is a compression of the retrodiscal elements at the level of the  neck flexioned angle  of the mandibular condyle.

9A 1 RNM 2

MRI TI: Sagittal slice sequence of the left TMJ closed mouth.

We can see that despite the anterior angulation of the articular process (because of one of the sequels of traumatism in infancy) the disc is positioned at the head of the mandibular condyle.  Notice that the health of the soft elements had been preserved, even so there is a compression of the retrodiscal elements at the level of the  neck flexioned angle  of the mandibular condyle.

9A 2 RNM 1

MRI TI: Sagittal slice sequence of the right TMJ closed mouth.

We can see that despite the anterior angulation of the articular process (because of one of the sequels of traumatism in infancy) the disc is positioned at the head of the mandibular condyle.  Notice that the health of the soft elements had been preserved, even so there is a compression of the retrodiscal elements at the level of the  neck flexioned angle  of the mandibular condyle.

9A 2 RNM 2

MRI TI: Sagittal slice sequence of the right TMJ closed mouth.

We can see that despite the anterior angulation of the articular process (because of one of the sequels of traumatism in infancy) the disc is positioned at the head of the mandibular condyle.  Notice that the health of the soft elements had been preserved, even so there is a compression of the retrodiscal elements at the level of the  neck flexioned angle  of the mandibular condyle.

9A 3 RNMMRI TI: Sagittal slice  of the right and left TMJ, open mouth.

In the maximum open position, we can better observe the anterior angulation of the articular processes. More significant in the left side.

9A 4 RNM

MRI TI: Frontal slice  of the right and left TMJ, closed mouth.

10 AB E FECHInitial kinesiographic record: significant loss of speed when the patient opens and closes his mouth. There is no coincidence between the opening and closing trajectories in the sagittal view record. The record  in the sagittal view looks very vertical when the patient opens and closes the mouth, which is  typical of deep overbites.

11 REGISTRO DE MORDIDATo properly evaluate the maxillomandibular relationship we  should start considering the physiological mandibular rest position.

Physiological rest is a concept, applicable to the rest of the body muscles.

The stomathognatic muscles are not the exception.

The masticatory muscles of the patient were  electronically deprogrammed and a new neurophysiological rest position was recorded.

The record showed a pathological free space of 11,8 mm and a retrusion of 2 mm.

Remember that the angulation of the mandibular condyle caused by trauma in early childhood led to a loss in the  vertical growth and a compression at the  level of the flexioned angle of the mandibular condyle neck.

   Click here To read more about traumatisms in childhood and the greenstick fractures of the mandibular process.

12 DENTES ORTESE

With the recorded data after the electronical mandibular deprogramming and the kinesiographic trace obtained with the jaw tracker, we constructed a  DIO (intraoral device), to mantain the tridimentional registered position.

This intraoral device must be tested to objectively measure the patient.

13 CONTROLE ORTESEKinesiographic record control of the DIO  (intra oral device), constructed in neurophysiological position. Neuromuscular trajectories  are coincident and the  interocclusal free space is now 2.4mm.

These controls must be performed PERIODICALLY DURING THE FIRST PHASE OF TREATMENT and also during the SECOND PHASE OF TREATMENT.
In the clinical cases published in the  TMJ STUDY AND INVESTIGATION PAGE  I post a minimum selection of the sequenced records obtained during the treatment.

It is important to remember that during the neurophysiological treatment the patient is measured and controlled during all treatment.

9A 1 RNM

The patient presented problems in the three-dimensional localization of the mandibular condyle

Even that structurally the mandibular condyles had undergone changes in the growth axis due to trauma in early childhood, they did not presented lesions that prevented us (after the  improvement of the three-dimensional jaw location) to continue with the SECOND PHASE OF THE TREATMENT.

9A 2 RNM

In this specific clinical case I decided NOT  to request a second MRI, since I didn’t need to control the improvement of the condyle disc complex nor the bone marrow signal.

The patient had remission of symptoms, allowing us to move on to the SECOND STAGE OF THE NEUROPHYSIOLOGICAL TREATMENT.

15 sequencia 1In the upper image we can observe from top to bottom:

Habitual occlusion of the patient before treatment.

Patient’s occlusion  with the DIO ( intraoral device)

Initiation of the  three-dimensional orthodontics, ALWAYS WITH DIO (intraoral device) built in neurophysiological position.

Installation of an upper removable expander.

16 B sequenciaSequence in three-dimensional orthodontics with the expander and the movement of the first upper  premolar on the left side for the installation of a dental implant.

17 sequenciaSequence of the three-dimensional orthodontics in this specific clinical case.

17B sequenciaSequence of the three-dimensional orthodontics in this specific clinical case and installation of the dental implant, because of the absence of the upper left canine.

18 sequenciaThe upper incisors were rehabilitated with resins to recover the aesthetics and functionality of the patient.

19 PANORAMICA NO TRATPatient’s panoramic radiograph:  control with the implant installed  and three-dimensional orthodontics during the neurophysiological treatment.

The DIO, (intraoral device) in neurophysiological position installed in the mouth during the Second Phase.

20 RESINAS INFERIORESThe lower incisors were rehabilitated with resins to recover the aesthetics and functionality of the patient.

The active eruption in the posterior sector was completed until the finalization of the second phase.

In this particular clinic case the active eruption sequence was not documented in images. For those who want to remember this THREE- DIMENTIONAL ORTHODONTICS I suggest to click on this link

22 DENTES FINALThe patient’s occlusion after neurophysiological treatment. First and second phase finished.

23 DENTES FINAL COMPARATIVOSPatient’s comparative occlusion  images before and after the  neurophysiological treatment.

24 OCLUSAIS FINAISUpper and lower oclusal view of the patient after the neurophysiological treatment.

25 OCLUSAIS FINAIS COMPARATIVASPatient’s comparative images of the upper and lower oclusal view before and after the neurophysiological treatment.

26 PANORAMICAfinalPatient’s panoramic radiograph after the first and second phase of the neurophysiological treatment.

26A PANORAMICACOMPARATIVASComparative panoramic radiographs: before treatment, during treatment and after completion of the three-dimensional orthodontics and neurophysiological rehabilitation.

27 laminograpfia finalPatient’s laminography after the first and second phase of the neurophysiological treatment.

30 COMPARAÇAO PERFISPatient’s comparative lateral radiographs, before and after the neurophysiological treatment.

31 COMPARAÇAO C7Patient’s comparative lateral radiograph and cervical spine before the FIRST PHASE and fter the finalization of the THREE DIMENSIONAL ORTHODONTICS and the NEUROPHYSIOLOGICAL REABILITATION. 

In this case we cannot change a congenital fusion of the cervical vertebrae, but if we understand that there are myofascial chains that connect the TMJ to the body, we may then improve the three-dimensional location of the mandible and help the system. Naturally, the system is a whole and depending on each clinical case we will need the help help of professionals of different specialties.

32 COMPARAÇAO IMAGEM FRONTAL Comparative frontal images of the patient: before and after the neurophysiological treatment.

32 COMPARAÇAO PERFIL

 

 

 

 

 

 

 

Comparative profile images of the patient: before and after the neurophysiological treatment.

32  INICIAL DEPOIMENTO inglesSome time ago, while searching for an orthodontic treatment for my first child, I got to know Clinica MY.

At that time my priority was in fact to search for a solution to correct a teeth problem that my son had. After some consultations at the clinic I met Dr. Lidia, which already in our firsts and brief talks, and because of some complaints that I shared with her, she diagnosed that I, much more than my son, had problems related to dysfunctions in the TMJ.

She told me that I needed to search for a treatment.

In that occasion I had many teeth problems as inferior and superior teeth wear, broken tips, crackling when chewing.

32  FINAL DEPOIMENTO ingles

I had a lot of headaches, pain at the nape base and behind the eyes, and also pain on the back and shoulders. I also felt a pain sensation on my right eyebrow whenever I pass my hand on the forehead. It was something really strange and uncomfortable.

Happily this is something in the past. Thanks to the accurate diagnosis of Dr. Lidia and to the treatment that I followed strictly to the letter I am today free of those terrible symptoms.

I also would like to thank the careful work of Dr. Luis Daniel during all the treatment process and the attention and care that was given to me by all the Clinica MY team.

33 FINAL

 

 

TMJ Study and Investigation Page. One year of publication

Dear friends,

At December 2014 I started the Project TMJ Study and Investigation Page. At first, all its content was offered in three languages: Portuguese, English and Spanish. Due to the analysis of the webpage access statistics, at March 2015 I decided to offer the content solely in Portuguese and English.

Nowadays, the medicine based on evidence is hierarchically stratified from top to bottom where in the base of the pyramid we find the clinic cases, which are rarely seen as evidence. The TMJ Study and Investigation Page had, in its conception, the purpose of posting the clinic cases, which were carefully published with the documentation related to each of the patients treated at Clínica MY with pain complaints, dysfunction and TMJ pathology.

INITIAL

The proposition was of presenting these clinic cases and concepts in order share them, offering free access to the content along images, surface electromyographies, computerized kinesiography, scanned before and after the therapeutic process. Cases of tridimentional orthodontics and neurophisiologic reabilitation of the second phase of treatment, after the TMJ treatment, were also included.

site em portugues nova ingles

The TMJ Study and Investigation Page is completing, in this month of December, one year since it started, and I want to celebrate its anniversary with you. With this project, we have a place in the Internet that presents a line of work known as neurophysiologic dentistry, which takes into account the whole body system. It is an area that also operates regarding the posture and the mandibular functioning. In order to do that, the physiologic dentistry aims to establish, in the patient, a position that is based on a harmonious relation between the muscles, the teeth, and the temporolandibular joints.

site em ingles novaIn the publication of the end of this year I have chosen the most significant images of the whole year of publications, with their direct links to each one of the originals publications.

31

Joint Decompression in a Neurophysiological Mandibular Rest Position Promotes a Positive Remodeling in a Degenerative Process of a Teenager Temporomandibular Joint

english 1-1

Anatomy is the platform on which physiology functions

Sem Título-1

Structural modifications of the mandibular condylar process as one of the sequels of traumatism in infancy.

26

Articular discs recapture with mandibular neurophysiological repositioning

26

Cervical Dystonia or Spasmodic Torticollis: Positive evolution after Neurophysiological Treatment

2

Recapture of articular disc displacement with reduction. Recapture or not recapture that is the question.

17 COLUNA E PERFIL COMP

Inter relation of Craniomandibular disorders and vertebral spine. Case report

24

Tridimensional Orthodontics in the Second Phase of TMJ Pathologies

FINAL

Neurophysiological Combined Orthodontics and Rehabilitation: patient with degenerative conditions in several body joints

FINAL

TMJ Pathologies Treatment: first and second phase (tridimensional orthodontics) in a hypermobile joint patient with low signal in the head of the mandible bone marrow. Case report.

33

Articular Disc Recapture: patient with significant mandibular heads asymmetry and unilateral reducible luxation. Case report

Sem Título-1

Osteonecrosis of the Mandibular Head: recovery of condylar bone marrow alteration

6 BASAL ANTES E APOS O DEM

TMJ ( temporomandibular joint) Pathologies: Patient with severe pain in the region of the face, neck and temporomandibular joint. First and second phase.

18 comparativas

Patient with Ankylosing Spondylitis and non inflammatory TMJ pathology

15 3D comparativas

Mandible Condyle Fracture Consolidation by Neurophysiological Alignment of the Segments, Four Months after Unsuccessful Surgery. Case report

37 poster

The importance of Mandibular Rest Position by Electronic Deprogramming in the Treatment of Temporomandibular Joint Pathologies, Orthodontic Diagnosis and Oral Rehabilitation. Case report.

41 RNM AFTER TREATMENT cor

TMJ Pathologies in Children and Teenagers the Overlooked Diagnosis

evento 4

Training in Diagnosis and Treatment of TMJ Pathologies

31

The Postural Position of the Mandible and its Complexity in the Maxillomandibular Tridimensional Relation: first and second phase in a patient with severe symptoms with subtle information on the images.

e images.

26B LATERAIS COMPARATIVAS LINHA

The Tridimensional Neurophysiological Position of the Mandible in Implant Prosthesis Protocol

I want to thank my family that is always at my side in each one of the projects, I also want to thank my friends, that from Brazil and from many places of the world, supported and support this project. Last, but not least, I want to thank my colleagues and patients that often write, encouraging and thanking the existence of this virtual place.

By closing, in this moment, the annual analysis and the perspective for the year that follows, I therefore thank the readers of all places in the world that follow the TMJ Study and Investigation Page. It is a privilege to count with your visits.

With the best votes for 2016, and wishing for a year of peace, health, love and happiness for all.

Dr. Lidia Yavich

 

The Postural Position of the Mandible and its Complexity in the Maxillomandibular Tridimensional Relation: first and second phase in a patient with severe symptoms with subtle information on the images.

Understanding the complex inter relation of  craniomandibular disorders require a wide comprehension not only on anatomy and physiology of head and neck, but also of the vertebral spine. The cervical spine is the flexible link between the head and the trunk.

Only recently, dentistry began to think about the jaw and its association with the skull as a three-dimensional relationship, instead of considering it an isolated structure and evaluated in two dimensions as has been done traditionally.

To properly evaluate the maxillomandibular relationship we should start considering the physiological rest position.

Physiological rest is a concept, applicable to the rest of the body muscles

The stomathognatic muscles and not the exception

1 FRONTAL Male patient arrived to the clinic for consultation referring a strong pain behind the eyes, nonspecific facial pain, popping in the right temporomandibular joint and crackling on the same side.2 FRONTAL The patient reports tingling and numbness in the cervical spine, tingling sensation in his right shoulder. He also reports pain and stiffness in the back of the neck, shoulder pain and muscular tremor.

The patient had completed an orthodontic treatment and after the removal of the orthodontic device he began to feel the reported symptoms .3 PERFIL Due to the strong symptoms the patient consulted several professionals: clinical dentist, physiotherapist, general practitioner and a orthopedist for the  shoulder pain.

The orthodontist who treated him referred the patient to me, to see if I could help him.

4 MARCAÇÃO DA DOR

Section of the clinical record where the patient marks the pain points

 

Marking the pain points: headache, back of the neck stiffness, pain in the top of the head and in the forehead. Pain behind the eyes and in the back of the neck, popps, nonspecific facial pain, crepitus, dizziness and muscle tremor.

5 DENTESPatient’s habitual occlusion before treatment.

6 OCLUSALPatient’s occlusal superior and inferior view before treatment.

7 PANORAMICA INICIALPatient’s initial panoramic radiograph before treatment.

8 LAMINOGRAFIA INICIALPatient’s TMJ right and left laminography, closed and open mouth before treatment.

9 TELEPERFILPatient’s lateral radiograph before treatment.

10 FRONTALPatient’s frontal radiograph before treatment.

11 C7Patient’s lateral radiograph and cervical spine before treatment.

12 ELETROMIOGRAFIA INICIAL

Patient’s electromyography record in habitual occlusion before treatment.

In this dynamic record we registered the anterior right and left temporal muscles, the right and left masseter muscles, the right and left digastric muscles and the right and left upper trapezius muscles.

For this record we ask to the patient to open the mouth, close the mouth, clench strong and swallow.

Notice the asymmetry between the right masseter muscle and the left masseter muscle at maximal intercuspal sustained position. The digastric muscles during swallowing are activated before the masseter muscles which should not happen in a functional swallowing.

13 F CINECIO INICIAL

Patient’s initial kinesiographic record shows a significant loss of speed when the patient opens and closes the mouth. There is no coincidence between the neuromuscular trajectories in the sagittal view of the record.

The patient has hypermobile joints and has no limitation in opening the mouth.

13 A RES. ESQ 1 INICIAL MRI: sagittal slice left TMJ closed mouth. This image does not show significant alterations.

13 B RES. ESQ 2 INICIAL MRI: sagittal slice left TMJ closed mouth, this more medial slice shows the compression and the retroposition of the mandibular condyle. We can observe a facet on the top of the mandibular head.

REMEMBER THAT we are looking at a two-dimensional image and we have to understand that the COMPRESSION IS TRIDIMENSIONAL.

13 C RES. DIR 1 INICIAL  MRI: sagittal slice right TMJ closed mouth, this medial slice shows the compression and the retroposition of the mandibular condyle. We can observe a facet on the top of the mandibular head.

REMEMBER THAT we are looking at a two-dimensional image and we have to understand that the COMPRESSION IS TRIDIMENSIONAL.

13 D RES. DIR 2 INICIAL MRI: sagittal slice right TMJ closed mouth, in this medial slice is even more evident the compression and the retroposition of the mandibular condyle. We can observe a facet on the top of the mandibular head.

REMEMBER THAT we are looking at a two-dimensional image and we have to understand that the COMPRESSION IS TRIDIMENSIONAL.

13 E RESFRONTAIS INICIAIS

MRI: frontal slice from the right and left TMJ, closed mouth in habitual occlusion before treatment.

The right TMJ frontal slice makes clear a loss of joint space especially on the lateral pole.region  In both frontal images we can notice the reduction of the joint space.

13G REGISTRO NEUROFISIOLOGICOTo properly evaluate the maxillomandibular relationship we  should start considering the physiological mandibular rest position.

Physiological rest is a concept, applicable to the rest of the body muscles

The stomathognatic muscles and not the exception

The masticatory muscles of the patient were deprogrammed electronically and a new neurophysiological rest position was recorded.

14 ORTESE INICIAL With this data we constructed a DIO (intraoral device), to keep the three-dimensionally recorded position. This device must be tested electromyographically to objectively measure the patient.

Of course checking the patient’s symptoms is important, but the surface electromyography objectively shows if the muscular function improved, worst or did not change.

15 ELETROMIOGRAFIA COM O DIO Patient’s electromyographic record with the DIO (intraoral device), in neurophysiological position.

Note the symmetry of the masseter muscles. The digastric muscles DON’T ACTIVATE before the masseter muscles during swallowing. This implies that the patient closes the teeth and swallows and not the contrary as the first record in habitual occlusion.

16 CINCECIO COM DIO Patient’s kinesiographic record with the DIO (intraoral device): there has been an improvement in speed and COINCIDENCE in the trajectories when he opens and closes the mouth.17 FRONTAIS COMPARATIVAS Patient’s frontal radiographs comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

18 LAMINOGRAFIAS COMPARATIVAS Patient’s TMJ right and left closed and open mouth laminography comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

19 TELERADIOGRAFIAS COMPARATIVASPatient’s lateral radiographs comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

In the middle of the treatment I referred the patient to a physical terapist for a postural reprogramming.

With the jaw in a neurophysiological position the physiotherapist colleague worked on the rest of the muscular chains. The patient also presented an incipient discopathy at the level of C3 and C6.

20 PANORAMICAS COMPARATIVASPatient’s panoramic radiograph comparison: before treatment and during the neurophysiological treatment.20 A cinesiografias COMPARATIVAS Kinesiographic records comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

Note the improvement of the speed and the COINCIDENCE in the opening and closing trajectories.

20 A ELETROMIOGRAFIAS COMPARATIVAS Electromyography records comparison: in habitual occlusion before treatment and with the DIO (intraoral device), in neurophysiological position.

Note the symmetry of the masseter muscles, the digastric muscles DON’T ACTIVATE before the masseter muscles during swallowing. This implies that the patient closes the teeth and swallows and not the contrary as the first record in habitual occlusion before treatment.

21 ORTO The patient did not complained from pain and the other symptoms he had in the beginning of the treatment.The electromyography and kinesiographic records objectively showed the muscular function improvement.

We decided to start the SECOND PHASE of the treatment.

For this we used a three-dimensional orthodontics, where the teeth are erupted towards the new neurophysiological position. This procedure  will allow us, following the technical steps to remove the DIO.

22 ORTO 2  In the  second phase, in this case the three-dimentional orthodontics  the patient is monitored and electronically deprogrammed and many times the device is recalibrate to maintain the position obtained in the first phase.

23 ORTO Sequence of the second phase (in this specific clinical case).

24 ORTO Sequence of the second phase (in this specific clinical case).

25 ORTO Sequence of the second phase (in this specific clinical case).

26 ORTO Sequence of the second phase (in this specific clinical case).

27 ORTO Sequence of the second phase (in this specific clinical case).

28 ORTO2 Sequence of the second phase (in this specific clinical case).

29 ORTO

Second phase completed!

39 panoramica finalPatient’s panoramic radiograph after the finalization of the three-dimensional orthodontics.

30 ress comparativa frontal dir 1 MRI: Comparison of the frontal section of the RIGHT TMJ closed mouth  before neurophysiological treatment, and the same  RIGHT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint, especially in the lateral pole.

30 ress comparativa frontal dir 1 flecha

MRI: Comparison of the frontal section of the RIGHT TMJ closed mouth  before neurophysiological treatment, and the same  RIGHT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint, especially in the lateral pole. Note the arrows.

31 ress comparativa frontal esq 1 MRI: Comparison of the frontal section of the LEFT TMJ closed mouth, before neurophysiological treatment, and the same  LEFT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.31 ress comparativa frontal esq flecha 1MRI: Comparison of the frontal section of the LEFT TMJ closed mouth, before neurophysiological treatment, and the same  LEFT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint. Note the arrows.32 ressonancia comparativa 1 MRI: Comparison of the sagittal section of the LEFT TMJ closed mouth, before neurophysiological treatment, and the same  LEFT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.33 ressonancia comparativa 2

MRI: Comparison of the sagittal section of the LEFT TMJ closed mouth, before neurophysiological treatment, and the same  LEFT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.

34 ressonancia comparativadir 1 int

MRI: Comparison of the sagittal section of the RIGHT  TMJ closed mouth, before neurophysiological treatment, and the same  RIGHT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.

Improvement in the relationship between the mandibular condyle and the articular disk.

35 ressonancia comparativadir 2int MRI: Comparison of the sagittal section of the RIGHT TMJ closed mouth, before neurophysiological treatment, and the same  RIGHT TMJ closed mouth  after the COMPLETION OF THE SECOND PHASE with the three-dimensional orthodontics.

Note the decompression of the temporomandibular joint.

Improvement in the relationship between the mandibular condyle and the articular disk.36 eletromiografia final Patient’s electromyography record in neurophysiological occlusion AFTER THE FINALIZATION OF THE THREE DIMENSIONAL ORTHODONTICS.

Note the symmetry of the masseter muscles.

The digastric muscles DO NOT ACTIVATE before the masseter muscles during swallowing. This implies that the patient closes the teeth and swallows and not the contrary as the first record in habitual occlusion before treatment..

This means that the objectives achieved in the FIRST PHASE with the DIO in neurophysiological position were held after the finalization of the THREE DIMENSIONAL ORTHODONTICS.

37 eletromiografia comparativas Patient’s electromyography records comparison:

Before the treatment in habitual occlusion.

With the DIO (intraoral device), in neurophysiological position, during the FIRST PHASE of the treatment.

 AFTER THE FINALIZATION OF THE THREE DIMENSIONAL ORTHODONTICS.38 laterais comparativas

Patient’s lateral radiograph comparison:

Before the treatment in habitual occlusion.

With the DIO (intraoral device), in neurophysiological position, during the FIRST PHASE of the treatment.

 AFTER THE FINALIZATION OF THE THREE DIMENSIONAL ORTHODONTICS.

38 laterais comparativas 1

 Maxillomandibular values comparison: 

Before the treatment in habitual occlusion.

With the DIO (intraoral device), in neurophysiological position, during the FIRST PHASE of the treatment.

 AFTER THE FINALIZATION OF THE THREE DIMENSIONAL ORTHODONTICS.

41 OCLUSAO FINALIn a recent revision after two years of completion of the SECOND PHASE with the three dimensional, I registered the habitual patient’s occlusion.

The patient continues free of symptoms.

In the postural mandible position and its complex three-dimensional relationship with the maxilla little details are essentials, especially in a hypermobile joint patient.

It is not a case of deep bite, not a case where simply moving the incisive guide anteriorly could solve the problem.

In the  images the three-dimensional compression in this patient looks SUBTLE, but no less devastating.

Each case is different and every human being is a unique individual.

patient testimony

 In the first evaluation, Dr. Lidia was very helpful explaining to me all the method of the treatment and what was necessary to achieve the expected results.

 Along the way, I had neither more headaches nor joint pain, I was pain free.

Everyone in the team was very devoted to my treatment, and I had in the end an excellent result.

Today I am very grateful to Dr. Lidia and her team for all the attention.

Big huge to everyone from clinica my.

TMJ ( temporomandibular joint) Pathologies: Patient with severe pain in the region of the face, neck and temporomandibular joint. First and second phase.

1

Female patient 31 years old comes to consultation reporting severe headache, severe pain in the temporal, especially on the left side, pain on the left ear and pressure on the left eye.

She also states strong neck pain, dizziness, and reports that she feels a burning sensation on the cheek and also pain.

2

She also reports allergic rhinitis and sinusitis, for which she had already made several treatments. But the rhinitis or the sinusitis where never acompannied by the pain she was reporting. This was something new.

She reports having bruxism.

3 OCLUSAO INICIAL

The patient states that she used removable and also fixed orthodontics appliances from her 15 years old until her 18 years old.

She refers to a traumatism in the anterior sector in which the incisor fractured the incisal edge when she was a child.(see publication Structural Modifications of the Mandibular Condylar Process as one of the sequels of traumatism in infancy)4 OCLUSAIS

We can see the wear on the upper and lower incisors.

Regarding the beginning of the pain, the patient reported that she frequently felt fatigue in her facial muscles; she was a teacher and talked a lot during the classes.

But then she felt just fatigue, she never had the pain she was feeling now.

The episode that the patient reported as triggering the pain was when she broke a tooth when she was chewing.4 retrato

Patient testimony

When I broke my tooth while chewing, I went to an emergency clinic where they made a curative and headed me for a root canal.

When the root canal was finished, I left the dental office with A LOT OF PAIN.

But it was not toothache; it was a lot of pain in the face, especially in the masseter muscle.

 Days after  I started to feel an hallucinating pain in the neck, pain in the left ear and headache;

At the time I was derived to a professional who did occlusal adjustments and installed a splint.

I threw away the splint, since I complained that the device did not ease the pain but increased the pain I was feeling.

From that moment I started to consult a lot of professionals.

When she ended the latter sentence, the patient looked into my eyes and while crying she asked: Dr, do you believe in the things I´m telling you?

I said YES, and I answered, I BELIEVE IN YOUR REPORT.

The patient increased her crying and told me that many of the professionals she visited said that she had nothing and the pain was a thing of her head. Just stress!

4A PANORAMICA INICIAL

The panoramic radiograph of the patient shows the root canals endodontically treated (maxillary first molar on the left, 26). This is the tooth that the patient reported having fractured and treated)

We can see that the third molar on the left (48) is angled and impacted on the distal of the second lower molar on the right.

4B LAMINOGRAFIA INICIAL

In the temporomandibular joint laminography of the patient, we can see an anterior angulation of the articular processes. We can also observe a flattening of the upper and posterior surface of both articular processes; it is more significant on the right side.

4C RADIOGRAFIA LATERAL INICIAL

Patient’s lateral radiograph before treatment4D LARGO DE PERNASAt a certain moment a scanning of the lower limbs was asked to the patient, as a difference in length of the lower limbs was suspected. It revealed to be just a muscle shortening, since structurally her lower limbs presented the same measure.5 abre e fecha 1

Computerized kinesiology analyzes the graphic movements that the jaw performs in the three directions of space. The patient has an opening of 30 mm which is already considered a limitation.

The patient does not have good speed in opening and  closing the mouth. This can be an indicator of muscle disorders, intra-articular injuries or discrepancies between the teeth and the muscles.

6 BASAL ANTES E APOS O DEM

In this basal electromyography the masticatory muscles are in hyperactivity, after electronic deprogramming the muscles down their values.

An electromyography with a lower value, after the electronic relaxation, for a particular muscle, is more important than the absolute value before being pulsed.

7 MORDE FORTE ABRE ENGOLE

In this dynamic electromyography, the patient clench hard twice, opens her mouth, closes her mouth and swallows. Masseter muscles, which are the most potent muscles of the stomatognathic system generate very little activity in maximum occlusion.

The anterior temporalis are recruiting more motor units than the masseters, which is not physiological in a system that works in a balanced manner.

8 HABITUAL E ROLOS

In this dynamic electromyography (A) the patient bites into habitual maximum intercuspation, (B) the patient bites with cotton rolls on the right and the  left between her occlusal surfaces, the activity improves considerably.

Every modification of the joint position leads to muscle length change, and consequently it change its strength.The muscles that are shortened or lengthened by approximately 20% exhibit the so-called mechanical failure and a decreased intrinsic potency (Macintosh, Valencia et al., 1986).9 ressonancias iniciais

MRI of the patient: we can see an anterior angulation of the articular processes, flattening of the upper and posterior surface of both articular processes, information that we already have in the laminography.

The joint articular discs are very thinned which structurally implies an articular disc that can not always fulfill the function for which an articular disk is designed. It is imperative to promote joint decompression.

Remember the electromyography improvement that we had with the placement of cotton rolls between the occlusal surfaces.

11A TOMA DE MORDIDA

The masticatory muscles of the patient were deprogrammed electronically and the rest position was registered with a computerized jaw tracker.

This record was very difficult to achieve.  It was very difficult to deprogram the patient.  Even so a very thin DIO (intraoral device) was constructed in neurophysiological position  to promote the jaw reposition that was in a slight posterior position.

We left an inter-occlusal free space of 1 mm which  normally is very little (remember that the jaw tracker enables this type of measurement)

In the screen we may read a comment  that says (this is the record that I managed to take). I wanted to register this in the original record, as many times we don´t get a good record in the first time and this was the case. Logically records will modify as the system improves.11B RECALIn this other record where we are recalibrating the patient’s device , we can see the coincidence of the habitual trajectory with the neuromuscular trajectory. The patient is now deprogramming better so we could build  a better intra-oral device.

12 ABRE FECHA ORTESE

In this kinesiographic record with the DIO (intraoral device) in neurophysiological position, we can see the improvement of the trajectory in mandibular opening, closing and speed. Remember that the patient did not have a good speed in mandibular opening and closing, and she had a more vertical opening trajectory.

13 ABRE FECHA comparativas

Kinesiographic comparative records of opening, closing and speed: in habitual position before treatment and with the DIO (intraoral device).

13A TOMA DE MORDIDA E RECAL

Comparative rest position records: before treatment and recalibrating the DIO (intraoral device). In the recalibration record we can observe the coincidence of the habitual trajectory with the neuromuscular trajectory.

14 PANORAMICA ANTES DA ORTO

The first phase was carried out ( treatment of the TMJ)  with the controls and recalibrations required to enhance the mandibular position, in this case together with physical therapy to balance the postural chains.

At the request of the panoramic radiograph before moving on to the second phase of this case (three-dimensional orthodontics) it can be observed the third right lower molar eruption. This molar was impacted in the distal of the second right  lower molar. (31-year-old patient).

At this step it was only released the acrylic of the DIO in the region of the third impacted molar, returning the vertical dimension of the patient and allowing the eruption of the third molar.

15 PANORAMICAS COMPARATIVAS

Comparison of pre-treatment panoramic radiograph and after the first phase with the DIO (intraoral device) installed in neurophysiological position.

At this point a three-dimensional orthodontics is initiated to remove the DIO.

This orthodontic treatment as was explained in previous publications (see the publication Tridimensional Orthodontics in the Second Phase  of TMJ pathologies) must maintain the mandibular location  in balance with the muscular planes, with the temporomandibular joints and the dental plans, obtained in the first phase.

For this we have tools such as surface electromyography and electronic jaw deprogramming, that helps us to control how the system is functioning.

Few sequences will be shown until the full withdrawal of the DIO (intraoral device)

16 orto 0 1

Active eruption of lateral segments, already in a more advanced stage. The teeth are filling the space formerly occupied by the DIO.18 PANORAMICA CONTROLE  ORTO

Patient´s panoramic x-ray: control of the active eruption. It corresponds to the sequence shown in the previous image.

19 orto 0 1B

Three-dimensional orthodontics treatment continuation: Image with and without the device, the lateral sectors have already erupted.20 orto 2Three-dimensional orthodontics treatment continuation.21 oclusao final

The alignment of the upper and lower incisors sector was achieved just as the restoration with resin of the fractured part of the incisor.

Conclusion of the three-dimensional orthodontics after TMJ treatment.22 OCLUSAIS FINALConclusion of the three-dimensional orthodontics after TMJ treatment.22A eletromiografia final 22APatient’s dynamic electromyographic record after treatment.22B eletromiografia COMPARATIVAPatient’s SEMG records: before and after treatment. We can analyze the balance and functioning of the masseter, which did not happen in the initial registration.23 ABRE FECHA APOS O TRATAMENTO 2Kineciographic record: opening, closing and speed after treatment conclusion.23 B abertura e fechamento comparativasKinesiographic comparative records of opening, closing and speed: in habitual position before treatment, with the DIO (intraoral device) and after treatment conclusion.24 LAMINOGRAFIAfinal LPatient’s laminography in neurophysiological occlusion after treatment conclusion.25 LAMINOGRAFIAS COMPARATIVAS

Patient’s comparative laminographies: in habitual occlusion before treatment and neurophysiological occlusion after treatment conclusion.

It should be understood that the chosen mandibular position is the one where the joints are decompressed and muscles are able to recruit more motor units, for that we use electronic mandibular deprogramming. Registration also depends on the information obtained in the images.25B res. comparativasMRI (magnetic resonance imaging) comparative images of the patient: in habitual occlusion before treatment and in neurophysiological occlusion in the conclusion of treatment.

It should be understood that the chosen mandibular position is the one where the joints are decompressed and muscles are able to recruit more motor units, for that we use electronic mandibular deprogramming.

Registration ALSO DEPENDS on the information obtained in the images. MRI also provides information that should be taken into account when we decide the mandibular position, enhancing the data provided by the computerized jaw tracker: which and the type of disc, disk positioning, whether or not recapture among other data.

26 panoramica final LPatient’s panoramic radiography after conclusion of the second phase, in this case the three-dimensional orthodontics.26B panoramica COMPARATIVAS

Patient’s comparative panoramic radiographs: 1 before treatment, 2 during the first phase, 3 during the three-dimensional orthodontics, 4 after conclusion of the three-dimensional orthodontics.

27 fase frontalPatient’s comparative frontal image before and after treatment.28 fase perfilPatient’s comparative profile image before and after treatment.29Patient testimony

Dear Doctor,

I clearly remember when everything began.

First I used to feel a huge fatigue in the muscles of the face and mouth. I was very stressed then, I was teaching and I used to speak a lot.

Then I broke a tooth. And (ouch!) what to do? I looked for an emergency doctor and he made me a curative. He advised me to go to a dentist and I had to make a root canal there. I left the clinic in pain.(an incredible, allucinating headache,and ear pain)

I began to loos weight… I felt a malaise, a lack ou courage. My face muscle, the masseter seemed to be making weightlifting. Felt as strong and stout, but it hurt so much! It looked as if I had 200 Kg on my face and my neck seemed not to be part of my body. What an unbearable pain! I felt a general rejection, a lack of will of living.) My whole body started to ache. Even fibromyalgia some would say I had, others said I had one leg which was smaller that the other other would say… To sum up, I was a time bomb of all the problems professionals said I had… (I felt like that…)

From there I visited a lot of professionals.

Michigan splint, intensive physiotherapy, chiropractic terapy , shiatsu, do-in… So desperate I was! I even searched for an afro-brazilian religious priest (mãe de santo)….. But nothing relief me from my pain.

I was then that I went to see a very SPECIAL person in my CRAZY life! Dr. Lidia!!

It got better… but NOOOO the strife started to increase!!! Exams, resonances, what an affliction!

From that day five years had passed until my life got back in track… Back to normal with or without pain. But actually it came back on track WITHOUT ANY PAIN!!!

But for that a lot of water had flowed under the bridge!

The result was that after many appointments at the clinic, I remember the attendance on a Sunday of World Cup when Brazil was Champion and that compassionate soul (hahaha) helped me.

So much pain! So much despair! Even so that doctor had so much will and patience to cure me!

It was a hard path. But… We made it and we found that one of my wisdom teeth were totally ignorant (they had no wisdom at all) and it decided to sprout after my thirties.

I used to say that my teeth were like two soccer fan crowds that did not fit, as Palmeiras e Corintians (something like Chelsea and Manchester). They were in ethernal fight!

But after the storm…. My problems started to be solved.

Today I have a big smile thanks to Dr. t Lidia, hahaha. I pray everyday to her.